DEGREE EXPONENT SUM ENERGY OF COMMUTING GRAPH FOR DIHEDRAL GROUPS

Mamika Ujianita Romdhini ${ }^{1 a c}$, Athirah Nawawi ${ }^{2 a b *}$, Chen Chuei Yee ${ }^{3 a}$

Abstract: For a finite group G and a nonempty subset X of G, we construct a graph with a set of vertex X such that any pair of distinct vertices of X are adjacent if they are commuting elements in G. This graph is known as the commuting graph of G on X, denoted by $\Gamma_{G}[X]$. The degree exponent sum (DES) matrix of a graph is a square matrix whose (p, q) -th entry is $d_{v_{p}} d_{v_{q}}+d_{v_{q}} d_{v_{p}}$ whenever p is different from q, otherwise, it is zero, where $d_{v_{p}}\left(\right.$ or $d_{v_{q}}$) is the degree of the vertex v_{p} (or vertex, v_{q}) of a graph. This study presents results for the DES energy of commuting graph for dihedral groups of order $2 n$, using the absolute eigenvalues of its DES matrix.

Keywords: Commuting graph, dihedral group, degree exponent sum matrix, the energy of a graph.

1. Introduction

A group is a set of elements associated by a binary operation, which satisfies closure property, has a unique identity element, and unique inverses for each element in the group (Aschbacher, 2000). Suppose now that \boldsymbol{G} is any finite group and $\boldsymbol{Z}(\boldsymbol{G})$ is the center of \boldsymbol{G}. The commuting graph of \boldsymbol{G} on a nonempty subset \boldsymbol{X} of \boldsymbol{G}, denoted by $\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]$, is a graph whose vertex set is \boldsymbol{X}, and two distinct vertices are adjacent if they commute in \boldsymbol{G}. If $\boldsymbol{X}=\boldsymbol{G} \backslash \boldsymbol{Z}(\boldsymbol{G})$, then we write $\boldsymbol{\Gamma}_{\boldsymbol{G}}:=\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]$ and $\boldsymbol{\Gamma}_{\boldsymbol{G}}$ is called the commuting graph of \boldsymbol{G}. This graph is a simple undirected graph introduced by Brauer and Fowler (1955).

The commuting graph of \boldsymbol{G} on \boldsymbol{X} has been further associated with the spectral graph theory, where matrices are associated with a graph. The adjacency matrix $\boldsymbol{A}\left(\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]\right)=\left[\boldsymbol{a}_{\boldsymbol{p} \boldsymbol{q}}\right]$ of $\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]$, is an $\boldsymbol{n} \times \boldsymbol{n}$ matrix, defined by its entries $\boldsymbol{a}_{\boldsymbol{p q}}$ are equal to 1 if there is an edge between the vertices $\boldsymbol{v}_{\boldsymbol{p}}, \boldsymbol{v}_{\boldsymbol{q}}$, and 0 otherwise. Clearly, $\boldsymbol{A}\left(\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]\right)$ is a symmetric matrix with zero diagonal entries since $\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]$ is a simple graph. For real numbers $\boldsymbol{\lambda}$ and an $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix $\boldsymbol{I}_{\boldsymbol{n}}$, the characteristic polynomial of $\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]$ is defined by $\boldsymbol{P}_{\boldsymbol{A}\left(\boldsymbol{\Gamma}_{G}[\boldsymbol{X}]\right)}(\boldsymbol{\lambda})=\boldsymbol{\operatorname { d e t }}\left(\boldsymbol{\lambda} \boldsymbol{I}_{\boldsymbol{n}}-\boldsymbol{A}\left(\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]\right)\right)$. The roots of $\boldsymbol{P}_{\boldsymbol{A}\left(\boldsymbol{\Gamma}_{G}[\boldsymbol{X}]\right)}(\boldsymbol{\lambda})=\mathbf{0}$ are $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \ldots, \boldsymbol{\lambda}_{\boldsymbol{n}}$ and are known as the eigenvalues of $\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]$.

[^0][^1]By the definition of adjacency matrix, the (ordinary) spectrum of the finite graph $\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]$ is the list of eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$, with their respective multiplicities $\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots, \boldsymbol{k}_{\boldsymbol{m}}$ as exponents, denoted by $\boldsymbol{\operatorname { S p e c }}\left(\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]\right)=$ $\left\{\lambda_{1}^{\left(\boldsymbol{k}_{1}\right)}, \lambda_{2}^{\left(\boldsymbol{k}_{2}\right)}, \ldots, \lambda_{\boldsymbol{m}}^{\left(\boldsymbol{k}_{\boldsymbol{m}}\right)}\right\}$. Furthermore, the energy of $\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]$ is the sum of the absolute eigenvalues of $\boldsymbol{A}\left(\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]\right)$, which is $\boldsymbol{E}\left(\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]\right)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. Other than that, Gutman found this definition in 1978 by considering a chemical molecule as a graph and estimating the $\boldsymbol{\pi}$-electron energy.

Several studies regarding the commuting graph involve the spectrum and energy of its adjacency matrix. For finite non-abelian groups, Dutta and Nath (2017a) and Dutta and Nath (2017b) have described the formula for the spectrum of the commuting graph. Laplacian spectrum, signless Laplacian spectrum and their corresponding energies of the commuting graph of dihedral groups can be found in Dutta and Nath (2018) and Dutta and Nath (2021). Furthermore, the discussion of the adjacency energy for the subgroup graph of the dihedral group has been done by Abdussakir et al. (2019). In 2022, Sharafdini et al. discussed the commuting graph for some finite groups with abelian centralizers and found the energy for some particular families of AC groups.

Apart from the adjacency matrix, Laplacian matrix, and signless Laplacian matrix, another matrix related to the degree of vertices in a graph defined by Basavanagoud and Eshwarachandra in 2020 is the principal focus point here, called the degree exponent sum (DES) matrix. A limited number of studies central to the DES matrices for the commuting graph have been found. This fact motivates us to have a detailed description of the DES energy for the commuting graphs of \boldsymbol{G}.

Received: January 21, 2022
Accepted: April 13, 2022
Published: September 30, 2022

In this paper, we focus on $\Gamma_{G}[\boldsymbol{X}]$ constructed on the nonabelian dihedral group of order $2 \boldsymbol{n}, \boldsymbol{n} \geq \mathbf{3}$, denoted as $\boldsymbol{D}_{2 n}=\left\langle\boldsymbol{a}, \boldsymbol{b}: \boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{b}^{\mathbf{2}}=\boldsymbol{e}, \boldsymbol{b a b}=\boldsymbol{a}^{-1}\right\rangle$. The center of $\boldsymbol{D}_{2 n}$, $\boldsymbol{Z}\left(\boldsymbol{D}_{2 \boldsymbol{n}}\right)$ is either $\{\boldsymbol{e}\}$ if \boldsymbol{n} is odd or $\left\{\boldsymbol{e}, \boldsymbol{a}^{\frac{n}{2}}\right\}$ if \boldsymbol{n} is even. The centralizer of the element $\boldsymbol{a}^{\boldsymbol{i}}$ in the group $\boldsymbol{D}_{2 n}$ is $\boldsymbol{C}_{\boldsymbol{D}_{2 n}}\left(\boldsymbol{a}^{\boldsymbol{i}}\right)=$ $\left\{\boldsymbol{a}^{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\}$ and for the element $\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}$ is either $\boldsymbol{C}_{\boldsymbol{D}_{2 n}}\left(\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}\right)=\left\{\boldsymbol{e}, \boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}\right\}$, if \boldsymbol{n} is odd or $\boldsymbol{C}_{\boldsymbol{D}_{2 n}}\left(\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}\right)=$ $\left\{e, a^{\frac{n}{2}}, a^{i} b, a^{\frac{n}{+i}} \boldsymbol{b}\right\}$, if \boldsymbol{n} is even.

2. Preliminaries

Now, we are ready to see the definition of the degree exponent sum (DES) matrix, considering $\boldsymbol{d}_{\boldsymbol{v}_{\boldsymbol{p}}}$ as the degree of $\boldsymbol{v}_{\boldsymbol{p}}$, which is the number of vertices adjacent to $\boldsymbol{v}_{\boldsymbol{p}}$. Moreover, if every vertex has the same degree \boldsymbol{r}, then the graph is called \boldsymbol{r}-regular graph.

Definition 2.1. (Basavanagoud \& Eshwarachandra, 2020) The DES matrix of order $\boldsymbol{n} \times \boldsymbol{n}$ associated with $\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]$ is given by $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]\right)=\left[\boldsymbol{\operatorname { d e s }}_{\boldsymbol{p q}}\right]$ whose $(\boldsymbol{p}, \boldsymbol{q})$-th entry is

$$
\operatorname{des}_{p q}=\left\{\begin{array}{ll}
d_{v_{p}}{ }^{d_{v_{q}}+d_{v_{q}}{ }^{d_{v_{p}}},} \begin{array}{l}
\text { if } p \neq q \\
0,
\end{array} \text { if } p=q
\end{array} .\right.
$$

Therefore, the DES energy of $\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]$ can be defined as follows:

$$
E_{D E S}\left(\Gamma_{G}[X]\right)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues (not necessarily distinct) of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]\right)$.

In this section, we include some previous results beneficial for the next section. The following lemma is important for computing the characteristic polynomial of the commuting graph $\boldsymbol{\Gamma}_{\boldsymbol{G}}$.

Lemma 2.1: (Ramane \& Shinde, 2017) If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and \boldsymbol{d} are real numbers, and $\boldsymbol{J}_{\boldsymbol{n}}$ is an $\boldsymbol{n} \times \boldsymbol{n}$ matrix whose all elements are equal to 1 , then the determinant of the $\left(\boldsymbol{n}_{1}+\boldsymbol{n}_{2}\right) \times\left(\boldsymbol{n}_{1}+\right.$ \boldsymbol{n}_{2}) matrix of the form

$$
\left|\begin{array}{cc}
(\lambda+a) I_{n_{1}}-a J_{n_{1}} & -c J_{n_{1} \times n_{2}} \\
-d J_{n_{2} \times n_{1}} & (\lambda+b) I_{n_{2}}-b J_{n_{2}}
\end{array}\right|
$$

can be simplified as given in the following expression
$(\lambda+a)^{n_{1}-1}(\lambda+b)^{n_{2}-1}\left(\left(\lambda-\left(n_{1}-1\right) a\right)\left(\lambda-\left(n_{2}-\right.\right.\right.$ 1)b) $\left.-n_{1} n_{2} c d\right)$,
where $\mathbf{1} \leq \boldsymbol{n}_{\mathbf{1}}, \boldsymbol{n}_{\mathbf{2}} \leq \boldsymbol{n}$ and $\boldsymbol{n}_{\mathbf{1}}+\boldsymbol{n}_{\mathbf{2}}=\boldsymbol{n}$.

A graph with \boldsymbol{n} vertices, where every vertex is adjacent to all other vertices, is called a complete graph $\boldsymbol{K}_{\boldsymbol{n}}$ and the complement of $\boldsymbol{K}_{\boldsymbol{n}}$ is denoted by $\overline{\boldsymbol{K}}_{\boldsymbol{n}}$. The following lemma is the result of the spectrum of $\boldsymbol{K}_{\boldsymbol{n}}$, which is useful in computing $\boldsymbol{E}_{\boldsymbol{D E S}}\left(\boldsymbol{\Gamma}_{\boldsymbol{G}}[\boldsymbol{X}]\right)$.

Lemma 2.2: (Brouwer \& Haemers, 2010) If $\boldsymbol{K}_{\boldsymbol{n}}$ is the complete graph on \boldsymbol{n} vertices, then its adjacency matrix is $\boldsymbol{J}_{\boldsymbol{n}}-\boldsymbol{I}_{\boldsymbol{n}}$ and the spectrum of $\boldsymbol{K}_{\boldsymbol{n}}$ is $\left\{(\boldsymbol{n}-\mathbf{1})^{(\mathbf{1})},(-\mathbf{1})^{(\boldsymbol{n}-\mathbf{1})}\right\}$.

3. Main Results

This section presents several results on the degree exponent sum (DES) energy of the commuting graph on the dihedral group of order $2 \boldsymbol{n}$. We divide \boldsymbol{n} into two cases, namely when \boldsymbol{n} is odd and \boldsymbol{n} is even. This is strictly for $\boldsymbol{n} \geq$ $\mathbf{3}$ since the dihedral group is abelian for $\boldsymbol{n}=\mathbf{1}$ and $\boldsymbol{n}=\mathbf{2}$.

Recall that the dihedral group of order $2 \boldsymbol{n}$ is $\boldsymbol{D}_{2 \boldsymbol{n}}=$ $\left\langle\boldsymbol{a}, \boldsymbol{b}: \boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{b}^{\mathbf{2}}=\boldsymbol{e}, \boldsymbol{b} \boldsymbol{a} \boldsymbol{b}=\boldsymbol{a}^{-\mathbf{1}}\right\rangle$. Let the set of rotation elements of $\boldsymbol{D}_{2 n}$, which are not members of $\boldsymbol{Z}\left(\boldsymbol{D}_{2 n}\right)$, be written as $\boldsymbol{G}_{\mathbf{1}}=\left\{\boldsymbol{a}^{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\} \backslash \boldsymbol{Z}\left(\boldsymbol{D}_{2 n}\right) \quad$ and $\quad \boldsymbol{G}_{\mathbf{2}}=$ $\left\{\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\}$ be the set of reflection elements of $\boldsymbol{D}_{\mathbf{2 n}}$. The following is the result of the degree of each vertex in the commuting graph of $\boldsymbol{D}_{2 n}$.

Theorem 3.1: Let $\Gamma_{\boldsymbol{D}_{2 n}}$ be the commuting graph of $\boldsymbol{D}_{2 n}$. Then,

1. the degree of $\boldsymbol{a}^{\boldsymbol{i}}$ in $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 \boldsymbol{n}}}$, denoted as $\boldsymbol{d}_{\boldsymbol{a}^{i}}$, is given by

$$
d_{a^{i}}=\left\{\begin{array}{l}
n-2, \text { if } n \text { is odd } \\
n-3, \text { if } n \text { is even }
\end{array}\right.
$$

2. the degree of $\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}$ in $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 \boldsymbol{n}}}$, denoted as $\boldsymbol{d}_{\boldsymbol{a}^{i} \boldsymbol{b}}$, is given by $d_{a^{i} b}=\left\{\begin{array}{l}0, \text { if } n \text { is odd } \\ 1, \text { if } n \text { is even }\end{array}\right.$

Proof.

1. If \boldsymbol{n} is odd, then $\boldsymbol{Z}\left(\boldsymbol{D}_{2 n}\right)=\{\boldsymbol{e}\}$. Since $\boldsymbol{C}_{\boldsymbol{D}_{2 n}}\left(\boldsymbol{a}^{\boldsymbol{i}}\right)=$ $\left\{\boldsymbol{a}^{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\}$, then $\boldsymbol{d}_{\boldsymbol{a}^{i}}=\boldsymbol{n}-\mathbf{2}$, removing \boldsymbol{e} and $\boldsymbol{a}^{\boldsymbol{i}}$ itself. If \boldsymbol{n} is even, then $\boldsymbol{Z}\left(\boldsymbol{D}_{2 \boldsymbol{n}}\right)=\left\{\boldsymbol{e}, \boldsymbol{a}^{\frac{n}{2}}\right\}$. Consequently, we have $\boldsymbol{d}_{a^{i}}=n-3$, removing $e, a^{\frac{n}{2}}$, and $\boldsymbol{a}^{\boldsymbol{i}}$ itself.
2. If \boldsymbol{n} is odd, the element $\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}$, where $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$, has the centralizer $\boldsymbol{C}_{\boldsymbol{D}_{2 \boldsymbol{n}}}\left(\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}\right)=\left\{\boldsymbol{e}, \boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}\right\}$ of size two, then there is no edge between any pair of vertices in $\boldsymbol{\Gamma}_{\boldsymbol{G}}$. Therefore, $\boldsymbol{d}_{\boldsymbol{a}^{i} \boldsymbol{b}}=\mathbf{0}$. If \boldsymbol{n} is even, the centralizer of each element $\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}$ is given by
$\boldsymbol{C}_{\boldsymbol{D}_{2 n}}\left(a^{\boldsymbol{i}} b\right)=\left\{e, a^{\frac{n}{2}}, a^{i} b, a^{\frac{n}{2}+i} b\right\}$, for all $1 \leq i \leq \boldsymbol{n}$.
Then, by excluding \boldsymbol{e} and $\boldsymbol{a}^{\frac{n}{2}}$, which are the central elements in $\boldsymbol{D}_{2 n}$, there exists only an edge between the
 $d_{a^{i} b}=1$.

Consequently, the isomorphism of the commuting graph with the common type of graphs can be seen in the following result:

Theorem 3.2: Let \boldsymbol{X} be any nonempty subset of $\boldsymbol{D}_{2 \boldsymbol{n}}$.

1. If $\boldsymbol{X}=\boldsymbol{G}_{\mathbf{1}}$, then

$$
\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}[\boldsymbol{X}] \cong \boldsymbol{K}_{\boldsymbol{m}}, \text { where } \boldsymbol{m}=\left|\boldsymbol{G}_{1}\right|
$$

$$
\begin{aligned}
& \text { 2. If } X=G_{2} \text {, then } \\
& \qquad \Gamma_{D_{2 n}}[X] \cong\left\{\begin{array}{cl}
\bar{K}_{n}, & \text { if } n \text { is odd } \\
1-\text { regular graph, } & \text { if } n \text { is even }
\end{array}\right.
\end{aligned}
$$

Proof:

1. The centralizer of $\boldsymbol{a}^{\boldsymbol{i}}$, for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$, is $\boldsymbol{C}_{\boldsymbol{D}_{2 n}}\left(\boldsymbol{a}^{\boldsymbol{i}}\right)=$ $\left\{\boldsymbol{a}^{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\}$ of size \boldsymbol{n}. This implies that every vertex of $\boldsymbol{G}_{\boldsymbol{1}}$ is adjacent to all vertices in the set itself. Thus, $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 \boldsymbol{n}}}\left[\boldsymbol{G}_{\boldsymbol{1}}\right] \cong \boldsymbol{K}_{\boldsymbol{m}}$, where $\boldsymbol{m}=\left|\boldsymbol{G}_{\boldsymbol{1}}\right|$.
2. It follows from Theorem 3.1 that the degree of $\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}$ in $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right]$ is all zero for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$, where \boldsymbol{n} is odd. Hence, $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right] \cong \overline{\boldsymbol{K}}_{\boldsymbol{n}}$, a complement of the complete graph on \boldsymbol{n} vertices. Now, suppose \boldsymbol{n} is even. Again, by Theorem 3.1, the degree of $\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}$ in $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right]$ is all 1. This implies that $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right]$ is disconnected, with each component isomorphic to the 1-regular graph.

We illustrate the two theorems above via the following examples for $\boldsymbol{n}=\mathbf{4}$ and $\boldsymbol{n}=\mathbf{5}$.

Example 1. Let $\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{8}}}$ be the commuting graph of $\boldsymbol{D}_{\mathbf{8}}$, where $D_{8}=\left\{e, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\}, \quad Z\left(D_{8}\right)=\left\{e, a^{2}\right\}$, $\boldsymbol{G}_{1}=\left\{a, a^{3}\right\}, \quad G_{2}=\left\{b, a b, a^{2} b, a^{3} b\right\}, \quad C_{D_{8}}(b)=$ $\left\{e, a^{2}, b, a^{2} b\right\}=C_{D_{8}}\left(a^{2} b\right)$, $C_{D_{8}}(a b)=$ $\left\{e, a^{2}, a b, a^{3} b\right\}=\boldsymbol{C}_{D_{8}}\left(\boldsymbol{a}^{3} b\right)$. Using the information on the centralizer of each element in $\boldsymbol{D}_{\mathbf{8}}$, the commuting graph of $\boldsymbol{D}_{\mathbf{8}}$ is as in Figure 1.

Figure 1. Commuting graph of D_{8}.

From Figure 1, it is clear that the degree of each vertex \boldsymbol{a} and $\boldsymbol{a}^{\mathbf{3}}$ is one. In particular, if $\boldsymbol{X}=\boldsymbol{G}_{\mathbf{1}}$, then $\boldsymbol{\Gamma}_{\boldsymbol{D}_{\boldsymbol{8}}}\left[\boldsymbol{G}_{\mathbf{1}}\right]$ is a complete graph on two vertices, \boldsymbol{K}_{2}. However, for each vertex $\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}$, for $\mathbf{1} \leq \boldsymbol{i} \leq \mathbf{4}$, its degree is also one. If $\boldsymbol{X}=\boldsymbol{G}_{\mathbf{2}}$, then $\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{8}}}\left[\boldsymbol{G}_{\mathbf{2}}\right]$ is a disconnected 1-regular graph with two components isomorphic to \boldsymbol{K}_{2}.

Example 2. Let $\Gamma_{\boldsymbol{D}_{\mathbf{1 0}}}$ be the commuting graph of $\boldsymbol{D}_{\mathbf{1 0}}$, where $D_{10}=\left\{e, a, a^{2}, a^{3}, a^{4} b, a b, a^{2} b, a^{3} b, a^{4} b\right\}$,
$Z\left(D_{10}\right)=\{e\}, \quad G_{1}=\left\{a, a^{2}, a^{3}, a^{4}\right\}, \quad G_{2}=\{b$, $\left.a b, a^{2} b, a^{3} b, a^{4} b\right\}, C_{D_{10}}\left(a^{i} b\right)=\left\{a^{i} b\right\}$, and $C_{D_{10}}\left(a^{i}\right)=$
$\left\{\boldsymbol{a}^{\boldsymbol{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \mathbf{4}\right\}$. Using the information on the centralizer of each element in $\boldsymbol{D}_{\mathbf{1 0}}$, the commuting graph of $\boldsymbol{D}_{\mathbf{1 0}}$ is as in Figure 2.

Figure 2. Commuting graph $\Gamma_{D_{10}}$.

From Figure 2, it is clear that the degree of each vertex $\boldsymbol{a}^{\boldsymbol{i}}$, where $\mathbf{1} \leq \boldsymbol{i} \leq \mathbf{4}$ is three. In particular, if $\boldsymbol{X}=\boldsymbol{G}_{\mathbf{1}}$, then $\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{1 0}}}\left[\boldsymbol{G}_{\mathbf{1}}\right]$ is a complete graph on four vertices, $\boldsymbol{K}_{\mathbf{4}}$. However, for each vertex $\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}$, for $\mathbf{1} \leq \boldsymbol{i} \leq \mathbf{5}$, its degree is zero. If $\boldsymbol{X}=\boldsymbol{G}_{\mathbf{2}}$, then $\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{1 0}}}\left[\boldsymbol{G}_{\mathbf{2}}\right]$ is a disconnected graph with five isolated vertices and isomorphic to the complement of a complete graph on five vertices, $\overline{\boldsymbol{K}}_{\mathbf{5}}$.

Theorem 3.3: Let \boldsymbol{X} be any nonempty subset of $\boldsymbol{D}_{2 \boldsymbol{n}}$.

1. If $\boldsymbol{X}=\boldsymbol{G}_{\boldsymbol{1}}$, then

$$
E_{D E S}\left(\Gamma_{D_{2 n}}[X]\right)= \begin{cases}4(n-2)^{n-1}, & \text { if } n \text { is odd } \\ 4(n-3)^{n-2}, & \text { if } n \text { is even }\end{cases}
$$

2. If $\boldsymbol{X}=\boldsymbol{G}_{\mathbf{2}}$, then

$$
E_{D E S}\left(\Gamma_{D_{2 n}}[X]\right)=4(n-1)
$$

Proof.
2. When \boldsymbol{n} is odd. From Theorem 3.2 (1), $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{\boldsymbol{1}}\right]=\boldsymbol{K}_{\boldsymbol{m}}$, where $\boldsymbol{m}=\left|\boldsymbol{G}_{\mathbf{1}}\right|=\boldsymbol{n}-\mathbf{1}$, removing \boldsymbol{e} in $\boldsymbol{Z}\left(\boldsymbol{D}_{2 \boldsymbol{n}}\right)$. Then, every vertex of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{\mathbf{1}}\right]$ has degree $\boldsymbol{n}-\mathbf{2}$. Subsequently, we can construct an $(\boldsymbol{n}-\mathbf{1}) \times(\boldsymbol{n}-\mathbf{1})$ DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{1}\right], \operatorname{DES}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{1}\right]\right)=\left[\boldsymbol{d e s}_{p q}\right]$ whose $(\boldsymbol{p}, \boldsymbol{q})$-th entry is $\boldsymbol{d e s}_{\boldsymbol{p q}}=(\boldsymbol{n}-2)^{n-2}+(\boldsymbol{n}-$ 2) ${ }^{n-2}=\mathbf{2}(\boldsymbol{n}-\mathbf{2})^{n-2}$, for $\boldsymbol{p} \neq \boldsymbol{q}$, and 0 otherwise:

$$
\begin{gathered}
\operatorname{DES}\left(\Gamma_{D_{2 n}}\left[G_{1}\right]\right) \\
=\left[\begin{array}{cccc}
0 & 2(n-2)^{n-2} & \cdots & 2(n-2)^{n-2} \\
2(n-2)^{n-2} & 0 & \cdots & 2(n-2)^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
2(n-2)^{n-2} & 2(n-2)^{n-2} & \cdots & 0
\end{array}\right] \\
=2(n-2)^{n-2}\left[\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 0
\end{array}\right] .
\end{gathered}
$$

In other words, the DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{\boldsymbol{1}}\right]$ is the product of $\mathbf{2}(\boldsymbol{n}-\mathbf{2})^{\boldsymbol{n}-\mathbf{2}}$ and the adjacency matrix of $\boldsymbol{K}_{\boldsymbol{n}-\mathbf{1}}$. Based
on Lemma 2.2, $\boldsymbol{\operatorname { S p e c }}\left(\boldsymbol{K}_{n-1}\right)$ is given by $\{(\boldsymbol{n}-$ 2) $\left.{ }^{(\mathbf{1})},(-1)^{(n-2)}\right\}$. Since the adjacency energy of K_{n-1} is $|\boldsymbol{n}-\mathbf{2}|+(\boldsymbol{n}-\mathbf{2})|-\mathbf{1}|=\mathbf{2}(\boldsymbol{n}-\mathbf{2})$, the DES energy of $\boldsymbol{\Gamma}_{D_{2 n}}\left[G_{1}\right]$ will be $\mathbf{2}(\boldsymbol{n}-2)^{n-2} \cdot \mathbf{2}(\boldsymbol{n}-2)=\mathbf{4}(\boldsymbol{n}-$ 2) ${ }^{n-1}$.

When \boldsymbol{n} is even. From Theorem 3.2 (1), $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 \boldsymbol{n}}}\left[\boldsymbol{G}_{\boldsymbol{1}}\right]=\boldsymbol{K}_{\boldsymbol{m}}$, where $\boldsymbol{m}=\left|\boldsymbol{G}_{\boldsymbol{1}}\right|=\boldsymbol{n}-\mathbf{2}$, removing \boldsymbol{e} and $\boldsymbol{a}^{\frac{n}{2}}$ in $\boldsymbol{Z}\left(\boldsymbol{D}_{2 n}\right)$. Then, every vertex of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{\boldsymbol{1}}\right]$ has degree $\boldsymbol{n}-\mathbf{3}$. Consequently, we can construct an $(\boldsymbol{n}-2) \times(\boldsymbol{n}-2)$ DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{1}\right], \operatorname{DES}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{1}\right]\right)=\left[\boldsymbol{d e s}_{p q}\right]$ whose $(\boldsymbol{p}, \boldsymbol{q})$-th entry is $\boldsymbol{d e s}_{\boldsymbol{p q}}=(\boldsymbol{n}-3)^{n-3}+(\boldsymbol{n}-$ $3)^{n-3}=\mathbf{2}(n-3)^{n-3}$, for $\boldsymbol{p} \neq q$, and 0 otherwise:

$$
\begin{gathered}
\operatorname{DES}\left(\Gamma_{D_{2 n}}\left[G_{1}\right]\right) \\
=\left[\begin{array}{cccc}
0 & 2(n-3)^{n-3} & \cdots & 2(n-3)^{n-3} \\
2(n-3)^{n-3} & 0 & \cdots & 2(n-3)^{n-3} \\
\vdots & \vdots & \ddots & \vdots \\
2(n-3)^{n-3} & 2(n-3)^{n-3} & \cdots & 0
\end{array}\right]
\end{gathered}
$$

$$
=2(n-3)^{n-3}\left[\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 0
\end{array}\right]
$$

Thus, the DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 \boldsymbol{}}}\left[\boldsymbol{G}_{\mathbf{1}}\right]$ is the product of $\mathbf{2}(\boldsymbol{n}-\mathbf{3})^{\boldsymbol{n - 3}}$ and the adjacency matrix of $\boldsymbol{K}_{\boldsymbol{n}-2}$. Based on Lemma 2.2, $\boldsymbol{\operatorname { S p e c }}\left(\boldsymbol{K}_{n-2}\right)$ is given by $\{(\boldsymbol{n}-$ 3) $\left.{ }^{(\mathbf{1})},(-1)^{(n-3)}\right\}$. Since the adjacency energy of K_{n-2} is $|\boldsymbol{n}-\mathbf{3}|+(\boldsymbol{n}-\mathbf{3})|-\mathbf{1}|=\mathbf{2}(\boldsymbol{n}-\mathbf{3})$, the DES energy of $\Gamma_{D_{2 n}}\left[G_{1}\right]$ will be $2(n-3)^{n-3} \cdot \mathbf{2}(n-3)=4(n-$ $3)^{n-2}$.
2. When \boldsymbol{n} is odd. From Theorem 3.2 (2), $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right]=\overline{\boldsymbol{K}}_{\boldsymbol{n}}$, where $\boldsymbol{n}=\left|\boldsymbol{G}_{2}\right|$. Then, all of the vertices have degree zero. Correspondingly, we can construct an $\boldsymbol{n} \times \boldsymbol{n}$ DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right], \boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{\mathbf{2}}\right]\right)=\left[\boldsymbol{d e s}_{\boldsymbol{p q}}\right]$ whose $(\boldsymbol{p}, \boldsymbol{q})$-th entry is $\boldsymbol{d e s}_{\boldsymbol{p q}}=\mathbf{0}^{\mathbf{0}}+\mathbf{0}^{\mathbf{0}}=2$, for $\boldsymbol{p} \neq \boldsymbol{q}$, and 0 otherwise:

$$
\begin{gathered}
\operatorname{DES}\left(\boldsymbol{I}_{D_{2 n}}\left[\boldsymbol{G}_{2}\right]\right)=\left[\begin{array}{cccc}
0 & 2 & \cdots & 2 \\
2 & 0 & \cdots & 2 \\
\vdots & \vdots & \ddots & \vdots \\
2 & 2 & \cdots & 0
\end{array}\right] \\
=2\left[\begin{array}{cccc}
\mathbf{0} & \mathbf{1} & \cdots & 1 \\
1 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 0
\end{array}\right] .
\end{gathered}
$$

In other words, $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right]\right)=\boldsymbol{2 A}\left(\boldsymbol{K}_{\boldsymbol{n}}\right)$ is the multiple of two adjacency matrices of $\boldsymbol{K}_{\boldsymbol{n}}$. Thus, $E_{D E S}\left(\Gamma_{D_{2 n}}\left[G_{2}\right]\right)=\mathbf{2}(|n-1|+(n-1)|-1|)=\mathbf{4}(n-$ 1).

When \boldsymbol{n} is even. From Theorem 3.2 (2), $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right]$ is a regular graph with degree one. Then, we can construct an $\boldsymbol{n} \times \boldsymbol{n}$ DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right], \operatorname{DES}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right]\right)=$
[$\left.\boldsymbol{d e s}_{p q}\right]$ whose (p, q)-th entry is $\boldsymbol{d e s}_{p q}=\mathbf{1}^{1}+\mathbf{1}^{1}=2$, for $\boldsymbol{p} \neq \boldsymbol{q}$, and 0 otherwise:

$$
\operatorname{DES}\left(\boldsymbol{\Gamma}_{D_{2 n}}\left[\boldsymbol{G}_{2}\right]\right)=\left[\begin{array}{cccc}
\mathbf{0} & \mathbf{2} & \cdots & \mathbf{2} \\
\mathbf{2} & \mathbf{0} & \cdots & \mathbf{2} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{2} & 2 & \cdots & \mathbf{0}
\end{array}\right]=\mathbf{2}\left[\begin{array}{cccc}
\mathbf{0} & \mathbf{1} & \cdots & \mathbf{1} \\
\mathbf{1} & \mathbf{0} & \cdots & \mathbf{1} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{1} & 1 & \cdots & \mathbf{0}
\end{array}\right] .
$$

It implies that $\operatorname{DES}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\left[\boldsymbol{G}_{2}\right]\right)=\mathbf{2 A}\left(\boldsymbol{K}_{n}\right)$. Thus, $E_{D E S}\left(\Gamma_{D_{2 n}}\left[G_{2}\right]\right)=4(n-1)$.

The DES energy of the commuting graph $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}[\boldsymbol{X}]$ for $\boldsymbol{X}=$ $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{\mathbf{2}}$ are given by the following examples, for $\boldsymbol{n}=\mathbf{4}$ and $\boldsymbol{n}=5$.

Example 3. In Figure 1, we have shown the commuting graph of $\boldsymbol{D}_{\mathbf{8}}$. When $\boldsymbol{X}=\boldsymbol{G}_{\mathbf{1}}$, since we only have two vertices \boldsymbol{a} and $\boldsymbol{a}^{\mathbf{3}}$, we have a $\mathbf{2} \times \mathbf{2}$ DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{8}}\left[\boldsymbol{G}_{\mathbf{1}}\right]$ with the nondiagonal entries are $\mathbf{1}^{\mathbf{1}}+\mathbf{1}^{\mathbf{1}}=\mathbf{2}$, and the diagonal entries are zero. We then obtain

$$
\operatorname{DES}\left(\Gamma_{D_{8}}\left[G_{1}\right]\right)=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]
$$

Furthermore, the characteristic polynomial of $\operatorname{DES}\left(\Gamma_{D_{8}}\left[G_{1}\right]\right) \quad$ is $\quad P_{\operatorname{DES}\left(\Gamma_{D_{8}}\left[G_{1}\right]\right)}(\lambda)=\operatorname{det}\left(\lambda I_{2}-\right.$ $\left.\operatorname{DES}\left(\Gamma_{D_{8}}\left[G_{1}\right]\right)\right)=\operatorname{det}\left[\begin{array}{cc}\lambda & -2 \\ -2 & \lambda\end{array}\right]=\lambda^{2}-4$. It implies that the eigenvalues of $\boldsymbol{D} \boldsymbol{E} \boldsymbol{S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{8}}}\left[\boldsymbol{G}_{\mathbf{1}}\right]\right)$ are $\lambda=\mathbf{2}$ and $\lambda=-2$. Therefore, the DES energy of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{\boldsymbol{8}}}\left[\boldsymbol{G}_{\boldsymbol{1}}\right]$ is $\boldsymbol{E}_{\boldsymbol{D E S}}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{\boldsymbol{8}}}\left[\boldsymbol{G}_{\boldsymbol{1}}\right]\right)=$ $|2|+|-2|=4=4(4-3)^{4-2}$.

For the case $\boldsymbol{X}=\boldsymbol{G}_{2}$, we know that the set of vertices is $\left\{\boldsymbol{b}, \boldsymbol{a} \boldsymbol{b}, \boldsymbol{a}^{2} \boldsymbol{b}, \boldsymbol{a}^{3} \boldsymbol{b}\right\}$. Here, we have a $\mathbf{4} \times \mathbf{4}$ DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{8}}\left[\boldsymbol{G}_{2}\right]$ with the non-diagonal entries are $\mathbf{1}^{\mathbf{1}}+\mathbf{1}^{\mathbf{1}}=\mathbf{2}$, while the diagonal entries are zero. Then, we get

$$
\operatorname{DES}\left(\Gamma_{D_{8}}\left[G_{2}\right]\right)=\left[\begin{array}{llll}
0 & 2 & 2 & 2 \\
2 & 0 & 2 & 2 \\
2 & 2 & 0 & 2 \\
2 & 2 & 2 & 0
\end{array}\right] .
$$

Additionally, the characteristic polynomial of $\operatorname{DES}\left(\Gamma_{D_{8}}\left[G_{2}\right]\right) \quad$ is $\quad P_{\operatorname{DES}\left(\Gamma_{D_{8}}\left[G_{2}\right]\right)}(\lambda)=\operatorname{det}\left(\lambda I_{4}-\right.$ $\left.\boldsymbol{D E S}\left(\Gamma_{\boldsymbol{D}_{8}}\left[\boldsymbol{G}_{2}\right]\right)\right)=(\boldsymbol{\lambda}+\mathbf{2})^{3}(\lambda-6)$. It implies that the eigenvalues of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{\boldsymbol{8}}}\left[\boldsymbol{G}_{2}\right]\right)$ are $\lambda=\mathbf{- 2}$ with multiplicity 3 and a single $\boldsymbol{\lambda}=6$. Therefore, $\boldsymbol{E}_{\boldsymbol{D E S}}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{8}}\left[G_{2}\right]\right)=3|-2|+$ $|6|=12=4(4-1)$.

Example 4. In Figure 2, we have presented the commuting graph of $\boldsymbol{D}_{\mathbf{1 0}}$. For $\boldsymbol{X}=\boldsymbol{G}_{\boldsymbol{1}}$, we have a $\mathbf{4} \times \mathbf{4}$ DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{10}}\left[\boldsymbol{G}_{\mathbf{1}}\right]$ with the non-diagonal entries are $\mathbf{3}^{\mathbf{3}}+\mathbf{3}^{\mathbf{3}}=\mathbf{5 4}$, while the diagonal entries are zero. We then obtain

$$
\operatorname{DES}\left(\Gamma_{D_{10}}\left[G_{1}\right]\right)=\left[\begin{array}{cccc}
0 & 54 & 54 & 54 \\
54 & 0 & 54 & 54 \\
54 & 54 & 0 & 54 \\
54 & 54 & 54 & 0
\end{array}\right]
$$

Furthermore, the characteristic polynomial of $\operatorname{DES}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{10}}\left[\boldsymbol{G}_{1}\right]\right) \quad$ is $\quad \boldsymbol{P}_{\boldsymbol{D E S}\left(\Gamma_{D_{10}}\left[G_{1}\right]\right)}(\lambda)=\operatorname{det}\left(\lambda I_{4}-\right.$ $\left.\operatorname{DES}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{10}}\left[\boldsymbol{G}_{1}\right]\right)\right)=(\boldsymbol{\lambda}+\mathbf{5 4})^{\mathbf{3}}(\boldsymbol{\lambda}-\mathbf{1 6 2})$. It implies that the eigenvalues of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{1 0}}}\left[\boldsymbol{G}_{\boldsymbol{1}}\right]\right)$ are $\boldsymbol{\lambda}=\mathbf{- 5 4}$ with multiplicity 3 and a single $\lambda=162$. Therefore, the DES energy of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{1 0}}}\left[\boldsymbol{G}_{\mathbf{1}}\right]$ is $\boldsymbol{E}_{\boldsymbol{D E S}}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{10}}\left[\boldsymbol{G}_{\mathbf{1}}\right]\right)=\mathbf{3 | - 5 4 |}+|\mathbf{1 6 2}|=$ $324=4(5-2)^{5-1}$.

Additionally, for $\boldsymbol{X}=\boldsymbol{G}_{\mathbf{2}}$, we have a $\mathbf{5} \times \mathbf{5}$ DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{10}}\left[\boldsymbol{G}_{\mathbf{2}}\right]$ with the non-diagonal entries are $\mathbf{0}^{\mathbf{0}}+\mathbf{0}^{\mathbf{0}}=\mathbf{2}$, and the diagonal entries are zero. We then obtain

$$
\operatorname{DES}\left(\Gamma_{D_{10}}\left[G_{2}\right]\right)=\left[\begin{array}{lllll}
0 & 2 & 2 & 2 & 2 \\
2 & 0 & 2 & 2 & 2 \\
2 & 2 & 0 & 2 & 2 \\
2 & 2 & 2 & 0 & 2 \\
2 & 2 & 2 & 2 & 0
\end{array}\right]
$$

Hence, the characteristic polynomial of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{10}}\left[\boldsymbol{G}_{\mathbf{2}}\right]\right)$ is $\boldsymbol{P}_{\boldsymbol{D E S}\left(\Gamma_{D_{10}}\left[G_{2}\right]\right)}(\lambda)=\operatorname{det}\left(\lambda I_{5}-\operatorname{DES}\left(\Gamma_{D_{10}}\left[G_{2}\right]\right)\right)=(\lambda+$ 2) ${ }^{4}(\lambda-8)$. It implies that the eigenvalues of $\operatorname{DES}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{10}}\left[\boldsymbol{G}_{2}\right]\right)$ are $\lambda=-\mathbf{2}$ with multiplicity 4 and $\lambda=\mathbf{8}$ with multiplicity 1. Therefore, $E_{D E S}\left(\Gamma_{D_{10}}\left[G_{2}\right]\right)=4|-2|+$ $|8|=16=4(5-1)$.

Theorem 3.4: Let $\Gamma_{D_{2 n}}$ be the commuting graph of $\boldsymbol{D}_{2 n}$. Then, the characteristic polynomial of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 \boldsymbol{n}}}\right)$ is

$$
\begin{aligned}
& \text { 1. } P_{D E S\left(\Gamma_{D 2 n}\right)}(\lambda)=\left(\lambda+2(n-2)^{(n-2)}\right)^{n-2}(\lambda+2)^{n-1}\left(\lambda^{2}-\right. \\
& \quad\left(2(n-1)+2(n-2)^{n-1}\right) \lambda+4(n-2)^{n-1}(n-1)- \\
& n(n-1)) \text {, for } n \text { is odd, while } \\
& \text { 2. } P_{D E S\left(\Gamma_{\left.D_{2 n}\right)}\right)}(\lambda)=\left(\lambda+2(n-3)^{(n-3)}\right)^{n-3}(\lambda+2)^{n-1}\left(\lambda^{2}-\right. \\
& \left(2(n-1)+2(n-3)^{n-2}\right) \lambda+4(n-1)(n-3)^{n-2}- \\
& \left.n(n-2)^{3}\right) \text {, for } n \text { is even. }
\end{aligned}
$$

Proof.

1. When \boldsymbol{n} is odd, from Theorem 3.1, we have $\boldsymbol{d}_{\boldsymbol{a}^{i}}=\boldsymbol{n}-\mathbf{2}$ and $\boldsymbol{d}_{\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}}=\mathbf{0}$, for all $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$. Then, using the fact that $\boldsymbol{Z}\left(\boldsymbol{D}_{2 n}\right)=\{\boldsymbol{e}\}$, we have $\mathbf{2 n - 1}$ vertices in $\Gamma_{\boldsymbol{D}_{2 n}}$. The set of vertices consists of $\boldsymbol{n}-\mathbf{1}$ vertices of the form $\boldsymbol{a}^{\boldsymbol{i}}$, for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}$, and \boldsymbol{n} vertices of the form $\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}$, for $\mathbf{1} \leq$ $\boldsymbol{i} \leq \boldsymbol{n}$. Consequently, the DES matrix for $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}$ is a (2n1) $\times(2 n-1)$ matrix, $\operatorname{DES}\left(\Gamma_{D_{2 n}}\right)=\left[\operatorname{des}_{p q}\right]$ whose entries are:
(i) $\operatorname{des}_{p q}=(n-2)^{n-2}+(n-2)^{n-2}=2(n-2)^{n-2}$, for $\boldsymbol{p} \neq \boldsymbol{q}$, and $\mathbf{1} \leq \boldsymbol{p}, \boldsymbol{q} \leq \boldsymbol{n}-\mathbf{1}$,
(ii) $\boldsymbol{d e s}_{p q}=(n-2)^{0}+(0)^{n-2}=1$, for $1 \leq p \leq n-1$ and $\boldsymbol{n} \leq \boldsymbol{q} \leq \mathbf{2 n - 1}$,
(iii) $\boldsymbol{d e s}_{p q}=(0)^{n-2}+(n-2)^{0}=1$, for $n \leq p \leq 2 n-1$ and $\mathbf{1} \leq \boldsymbol{q} \leq \boldsymbol{n}-\mathbf{1}$,
(iv) $\boldsymbol{d e s}_{p q}=(0)^{0}+(0)^{0}=2$, for $p \neq q, n \leq p \leq 2 n-$ $\mathbf{1}$ and $\boldsymbol{n} \leq \boldsymbol{q} \leq \mathbf{2 n - 1}$,
(v) $\boldsymbol{d e s} s_{p q}=0$, for $p=q$.

We can construct $\boldsymbol{D} \boldsymbol{E} \boldsymbol{S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)$ as follows:
$\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)$
$=\left[\begin{array}{cccc:cccc}\mathbf{0} & \mathbf{2 (n - 2})^{(n-2)} & \cdots & \mathbf{2 (n - 2})^{(n-2)} & \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{2 (n - 2) ^ { (n - 2) }} & \mathbf{0} & \cdots & \mathbf{2 (n - 2) ^ { (n - 2) }} & \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{2 (n - 2) ^ { (n - 2) }} & \mathbf{2 (n - 2) ^ { (n - 2) }} & \cdots & \mathbf{0} & \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \hdashline \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} & \mathbf{0} & \mathbf{2} & \cdots & \mathbf{2} \\ \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} & \mathbf{2} & \mathbf{0} & \cdots & \mathbf{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} & \mathbf{2} & \mathbf{2} & \cdots & \mathbf{0}\end{array}\right]$
$=\left[\begin{array}{cc}2(n-2)^{(n-2)}\left(J_{n-1}-I_{n-1}\right) & J_{(n-1) \times n} \\ J_{n \times(n-1)} & 2\left(J_{n}-I_{n}\right)\end{array}\right]$
$=\left[\begin{array}{ll}T_{1} & T_{2} \\ T_{3} & T_{4}\end{array}\right]$.
In the current case, $\boldsymbol{\operatorname { E E S }}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)$ is divided into four blocks, where the first block is $\boldsymbol{T}_{\mathbf{1}}$, which is a block of $(\boldsymbol{n}-\mathbf{1}) \times(\boldsymbol{n}-\mathbf{1})$ matrix with zero diagonal and all nondiagonal entries as $\mathbf{2}(\boldsymbol{n}-2)^{(n-2)}$. In the next two blocks, we have \boldsymbol{T}_{2} and $\boldsymbol{T}_{\mathbf{3}}$ matrices, which are of the size ($\boldsymbol{n}-\mathbf{1}) \times \boldsymbol{n}$ and $\boldsymbol{n} \times(\boldsymbol{n}-\mathbf{1})$, respectively, whose all entries are equal to one. The last block is \boldsymbol{T}_{4}, which is an $\boldsymbol{n} \times \boldsymbol{n}$ matrix with zero diagonal, and all non-diagonal entries are equal to two. Then, we obtain the characteristic polynomial of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)$ from the following determinant

$$
\begin{aligned}
& P_{D E S}\left(\Gamma_{D_{2 n}}\right)(\lambda)=\left|\lambda I_{2 n-1}-D E S\left(\Gamma_{D_{2 n}}\right)\right| \\
& =\left|\begin{array}{cc}
\left(\lambda+2(n-2)^{(n-2)}\right) I_{n-1}-2(n-2)^{(n-2)} J_{n-1} & -J_{(n-1) \times n} \\
-J_{n \times(n-1)} & (\lambda+2) I_{n}-2 J_{n}
\end{array}\right|
\end{aligned}
$$

By using Lemma 2.1, with $\boldsymbol{a}=\mathbf{2}(\boldsymbol{n}-2)^{(n-2)}, \boldsymbol{b}=\mathbf{2}, \boldsymbol{c}=$ 1, $\boldsymbol{d}=\mathbf{1}, \boldsymbol{n}_{1}=\boldsymbol{n}-\mathbf{1}$ and $\boldsymbol{n}_{\mathbf{2}}=\boldsymbol{n}$, we get the required result.
2. When \boldsymbol{n} is even, using Theorem 3.1, we know that $\boldsymbol{d}_{\boldsymbol{a}^{i}}=$ $\boldsymbol{n}-\mathbf{3}$ and $\boldsymbol{d}_{\boldsymbol{a}^{i} \boldsymbol{b}}=\mathbf{1}$, for all $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$. Then, using the fact that $\boldsymbol{Z}\left(\boldsymbol{D}_{2 n}\right)=\left\{\boldsymbol{e}, \boldsymbol{a}^{\frac{n}{2}}\right\}$, we have $\mathbf{2 n}-\mathbf{2}$ vertices in $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}$. The set of vertices consists of $\boldsymbol{n}-\mathbf{2}$ vertices of the form $\boldsymbol{a}^{\boldsymbol{i}}$, with $\boldsymbol{i} \neq \boldsymbol{n}, \frac{\boldsymbol{n}}{2}$ and \boldsymbol{n} vertices of the form $\boldsymbol{a}^{\boldsymbol{i}} \boldsymbol{b}$, for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$. Correspondingly, the DES matrix for $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}$ is a $(2 n-2) \times(2 n-2) \quad$ matrix, $\quad \operatorname{DES}\left(\Gamma_{D_{2 n}}\right)=\left[\operatorname{des}_{p q}\right]$ whose entries are:
(i) $\operatorname{des}_{p q}=(n-3)^{n-3}+(n-3)^{n-3}=2(n-3)^{n-3}$, for $\boldsymbol{p} \neq \boldsymbol{q}$, and $\mathbf{1} \leq \boldsymbol{p}, \boldsymbol{q} \leq \boldsymbol{n}-\mathbf{2}$,
(ii) $\boldsymbol{d e s}_{p q}=(n-3)^{1}+(1)^{n-3}=n-2$, for $1 \leq p \leq$ $n-2$ and $n-1 \leq q \leq 2 n-2$,
(iii) $\boldsymbol{d e s}_{p q}=(1)^{n-3}+(n-3)^{1}=n-2$, for $n-1 \leq$ $p \leq 2 n-2$ and $\mathbf{1} \leq \boldsymbol{q} \leq n-2$,
(iv) $\boldsymbol{d e s}_{p q}=(1)^{1}+(1)^{1}=2$, for $p \neq q, n-1 \leq p \leq$ $2 n-2$ and $n-1 \leq q \leq 2 n-2$, (v) $\boldsymbol{d e s}_{p q}=\mathbf{0}$, for $\boldsymbol{p}=\boldsymbol{q}$.

We can construct $\boldsymbol{D} \boldsymbol{E} \boldsymbol{S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)$ as the following:

$$
\begin{aligned}
& {\left[\begin{array}{cccc:cccc}
0 & 2(n-3)^{(n-3)} & \cdots & 2(n-3)^{(n-3)} & n-2 & n-2 & \cdots & n-2 \\
2(n-3)^{(n-3)} & 0 & \cdots & 2(n-3)^{(n-3)} & n-2 & n-2 & \cdots & n-2 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
2(n-3)^{(n-3)} & 2(n-3)^{(n-3)} & \cdots & 0 & n-2 & n-2 & \cdots & n-2 \\
\hdashline n-2 & n-2 & \cdots & n-2 & 2 & 0 & \cdots & 2 \\
n-2 & n & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & n-2 & \cdots & n-2 & 2 & 2 & \cdots & 0
\end{array}\right]} \\
& n-2 \\
& \\
& \hdashline=\left[\begin{array}{cccc}
2(n-3)^{(n-3)}\left(J_{n-2}-I_{n-2}\right) & (n-2) J_{(n-2) \times n} \\
\quad(n-2) J_{n \times(n-2)} & 2\left(J_{n}-I_{n}\right)
\end{array}\right] \\
& \quad=\left[\begin{array}{ll}
U_{1} & U_{2} \\
U_{3} & U_{4}
\end{array}\right] .
\end{aligned}
$$

In the current case, $\operatorname{DES}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)$ is divided into four blocks, where the first block we have $\boldsymbol{U}_{\mathbf{1}}$ which is a block of $(n-2) \times(n-2)$ matrix with zero diagonal and all non-diagonal entries as $2(\boldsymbol{n}-3)^{(n-3)}$. The next two blocks are $\boldsymbol{U}_{\mathbf{2}}$ and $\boldsymbol{U}_{\mathbf{3}}$, which are of the size $(\boldsymbol{n}-2) \times \boldsymbol{n}$ and $\boldsymbol{n} \times(\boldsymbol{n}-\mathbf{2})$, respectively, whose all entries are equal to $\boldsymbol{n}-\mathbf{2}$. The last block is $\boldsymbol{U}_{\mathbf{4}}$, which is an $\boldsymbol{n} \times \boldsymbol{n}$ matrix with zero diagonal, and all non-diagonal entries are equal to two. Then, we obtain the characteristic polynomial of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)$ from the following determinant

$$
\begin{aligned}
& P_{D E S\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\lambda I_{2 n-2}-D E S\left(\Gamma_{D_{2 n}}\right)\right| \\
= & \left|\begin{array}{cc}
\left(\lambda+2(n-3)^{(n-3)}\right) I_{n-2}-2(n-3)^{(n-3)} J_{n-2} & -(n-2) J_{(n-2) \times n} \\
-(n-2) J_{n \times(n-2)} & (\lambda+2) I_{n}-2 J_{n}
\end{array}\right| .
\end{aligned}
$$

By using Lemma 2.1, with $a=2(n-3)^{(n-3)}, b=2, c=$ $\boldsymbol{n}-2, d=n-2, n_{1}=n-2$ and $n_{2}=n$, we obtain the result.

The illustration of the above theorem is given by the following examples for $\boldsymbol{n}=4$ and $\boldsymbol{n}=5$.

Example 5. In Example 1, we obtained the commuting graph of $\boldsymbol{D}_{\mathbf{8}}$. Since the degree of each vertex is one, then we will have a $\mathbf{6} \times \mathbf{6}$ DES matrix of $\Gamma_{\boldsymbol{D}_{\mathbf{8}}}$ as follows:

$$
\operatorname{DES}\left(\Gamma_{D_{8}}\right)=\left[\begin{array}{llllll}
0 & 2 & 2 & 2 & 2 & 2 \\
2 & 0 & 2 & 2 & 2 & 2 \\
2 & 2 & 0 & 2 & 2 & 2 \\
2 & 2 & 2 & 0 & 2 & 2 \\
2 & 2 & 2 & 2 & 0 & 2 \\
2 & 2 & 2 & 2 & 2 & 0
\end{array}\right]
$$

Hence, the characteristic polynomial of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{8}}}\right)$ is $P_{D E S}\left(\Gamma_{D_{8}}\right)(\lambda)=\operatorname{det}\left(\lambda I_{6}-\operatorname{DES}\left(\Gamma_{D_{8}}\right)\right)=(\lambda+2)(\lambda+$ $2)^{3}\left(\lambda^{2}-8 \lambda-20\right)=(\lambda+2)^{5}(\lambda-10)$. Using Maple ${ }^{T M}$, we confirmed that the eigenvalues of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{8}}}\right)$ are $\boldsymbol{\lambda}=-\mathbf{2}$ with multiplicity 5 and a single $\lambda=10$. Therefore, $E_{D E S}\left(\Gamma_{D_{8}}\right)=5|-2|+|10|=20$.

Example 6. In Example 2, we have presented the commuting graph of $\boldsymbol{D}_{\mathbf{1 0}}$. Then, we have a $\mathbf{9} \times \mathbf{9}$ DES matrix of $\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{1 0}}}$ as follows:

$$
\operatorname{DES}\left(\Gamma_{D_{10}}\right)=\left[\begin{array}{cccc:ccccc}
0 & 54 & 54 & 54 & 1 & 1 & 1 & 1 & 1 \\
54 & 0 & 54 & 54 & 1 & 1 & 1 & 1 & 1 \\
54 & 54 & 0 & 54 & 1 & 1 & 1 & 1 & 1 \\
54 & 54 & 54 & 0 & 1 & 1 & 1 & 1 & 1 \\
\hdashline 1 & 1 & 1 & 1 & 0 & 2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 & 2 & 0 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 & 2 & 2 & 0 & 2 & 2 \\
1 & 1 & 1 & 1 & 2 & 2 & 2 & 0 & 2 \\
1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 0
\end{array}\right] .
$$

Hence, the characteristic polynomial of $\operatorname{DES}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{1 0}}}\right)$ is $P_{D E S}\left(\Gamma_{D_{10}}\right)(\lambda)=\operatorname{det}\left(\lambda I_{9}-\operatorname{DES}\left(\Gamma_{D_{10}}\right)\right)=(\lambda+$
$54)^{3}(\lambda+2)^{4}\left(\lambda^{2}-170 \lambda+1276\right)$. Using Maple ${ }^{\text {TM }}$, we confirmed that the eigenvalues of $\operatorname{DES}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{\mathbf{1 0}}}\right)$ are $\lambda=-\mathbf{5 4}$ with multiplicity $3, \lambda=-2$ with multiplicity 4 and $\lambda=85 \pm$ $3 \sqrt{661}$. Thus, $\quad E_{D E S}\left(\Gamma_{D_{10}}\right)=3|-54|+4|-2|+\mid 85+$ $3 \sqrt{661}|+|85-3 \sqrt{661}|=340$.

Theorem 3.5: Let $\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 \boldsymbol{n}}}$ be the commuting graph of $\boldsymbol{D}_{2 \boldsymbol{n}}$. Then 1. for the odd \boldsymbol{n},
$E_{D E S}\left(\Gamma_{D_{2 n}}\right)=4(n-2)^{n-1}+4(n-1)$,
2. and for the even n,

$$
E_{D E S}\left(\Gamma_{D_{2 n}}\right)= \begin{cases}20, & \text { if } n=4 \\ 4(n-3)^{n-2}+4(n-1), & \text { if } n>4\end{cases}
$$

Proof.

1. By Theorem 3.4 (1) for the odd \boldsymbol{n}, the characteristic polynomial of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)$ has four eigenvalues, with the first eigenvalue is $\lambda_{1}=-2(n-2)^{n-2}$ of multiplicity $n-$ 2 , and the second eigenvalue is $\lambda_{2}=-2$ of multiplicity $\boldsymbol{n}-1$. The quadratic formula gives the other two eigenvalues, which are $\lambda_{3}, \lambda_{4}=(n-2)^{n-1}+(n-1) \pm$ $\sqrt{\left((n-2)^{n-1}-(n-1)\right)^{2}+\boldsymbol{n}(n-1)}$, and both of them are positive real numbers. Hence, the DES energy for $\Gamma_{D_{2 n}}$ is
$E_{D E S}\left(\Gamma_{D_{2 n}}\right)=(n-2)\left|-2(n-2)^{n-2}\right|+(n-1)|-2|$
$+\mid(n-2)^{n-1}+(n-1)$
$\pm \sqrt{\left((n-2)^{n-1}-(n-1)\right)^{2}+n(n-1)}$
$=2(n-2)^{n-1}+2(n-1)+2(n-2)^{n-1}+2(n-1)$
$=4(n-2)^{n-1}+4(n-1)$.
2. By Theorem 3.4 (2) for the even \boldsymbol{n}, the characteristic polynomial of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)$ has four eigenvalues, with the first eigenvalue is $\lambda_{1}=-2(n-3)^{n-3}$ of multiplicity $n-$ 3 , and the second eigenvalue is $\lambda_{2}=-2$ of multiplicity $\boldsymbol{n}-\mathbf{1}$. The quadratic formula gives the other two eigenvalues, which leads to two cases. First, when $\boldsymbol{n}=\mathbf{4}$, they are a positive real number, and the other is negative. It is evident from Example 5 that $\boldsymbol{E}_{\boldsymbol{D} \boldsymbol{E S}}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 \boldsymbol{n}}}\right)=\mathbf{2 0}$. Meanwhile, for $\boldsymbol{n}>\mathbf{4}$, the last two eigenvalues are positive real numbers given by $\lambda_{3}, \lambda_{4}=(n-3)^{n-2}+$
$(n-1) \pm \sqrt{\left((n-3)^{n-2}-(n-1)\right)^{2}+n(n-2)^{3}}$.
Thus, the DES energy for $\Gamma_{D_{2 n}}$ is

$$
\begin{aligned}
& E_{D E S}\left(\Gamma_{D_{2 n}}\right)=(n-3)\left|-2(n-3)^{n-3}\right|+(n-1)|-2| \\
& +\mid(n-3)^{n-2}+(n-1) \\
& \pm \sqrt{\left((n-3)^{n-2}-(n-1)\right)^{2}+n(n-2)^{3}} \mid \\
& =4(n-3)^{n-2}+4(n-1) .
\end{aligned}
$$

4. Conclusion

This paper has given the general formula of degree exponent sum (DES) energy of commuting graphs for dihedral groups. In particular, $\boldsymbol{E}_{D E S}\left(\Gamma_{D_{2 n}}\right)=\mathbf{4}(n-2)^{n-1}+$ $\mathbf{4}(\boldsymbol{n}-\mathbf{1})$ when \boldsymbol{n} is odd. On the other hand, there are two cases for \boldsymbol{n} is even, namely $\boldsymbol{E}_{\boldsymbol{D} \boldsymbol{E S}}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)=\mathbf{2 0}$ if $\boldsymbol{n}=\mathbf{4}$ and $E_{D E S}\left(\Gamma_{D_{2 n}}\right)=\mathbf{4}(n-3)^{n-2}+\mathbf{4}(n-1)$ if $n>4$. This happens as a result of the difference between the quadratic polynomial roots, which is a part of the corresponding characteristic polynomial of $\boldsymbol{D E S}\left(\boldsymbol{\Gamma}_{\boldsymbol{D}_{2 n}}\right)$.

5. Acknowledgements

This research has been supported by the Ministry of Education (MOE) under the Fundamental Research Grant Scheme (FRGS/1/2019/STG06/UPM/UPM/02/9). We also wish to express our gratitude to Mataram University, Indonesia, for providing partial funding assistance.

6. References

Abdussakir, Akhadiyah, D. A., Layali, A., \& Putra, A. T. (2019). The adjacency spectrum of subgroup graphs of dihedral group. IOP Conference Series: Earth and Environmental Science. 243012042.
Aschbacher, M. (2000). Finite Group Theory, pp. 1 - 6, Cambridge, UK: Cambridge University Press.
Basavanagoud, B., \& Eshwarachandra, C. (2020). Degree exponent sum energy of a graph. Gulf Journal of Mathematics, 8(1): 52-70.
Brauer, R., \& Fowler, K.A. (1955). On groups of even order. Annals of Mathematics, 62(3): 565 - 583.
Brouwer, A.E., \& Haemers W.H. (2012). Spectra of Graphs, pp. $1-19$, New York, USA: Springer-Verlag.
Dutta, J. \& Nath, R. K. (2017a). Spectrum of commuting graphs of some classes of finite groups. Matematika, 33(1): 87-95.
Dutta, J. \& Nath, R. K. (2017b). Finite groups whose commuting graphs are integral, Matematički Vesnik, 69(3): 226 - 230.

Dutta, J. \& Nath, R. K. (2018). Laplacian and signless Laplacian spectrum of commuting graphs of finite groups. Khayyam Journal of Mathematics, 4(1): 77-87.
Dutta, P. \& Nath, R. K. (2021). Various energies of commuting graphs of some super integral groups. Indian Journal of Pure and Applied Mathematics, 52(1): 1 - 10.
Gutman, I. (1978). The energy of graph. Ber. Math. Statist. Sekt. Forschungszenturm Graz, 103: 1 - 22.
Sharafdini, R., Nath, R. K., \& Darbandi, R. (2022). Energy of commuting graph of finite AC-groups. Proyecciones Journal of Mathematics, 41(1): 263-273.

[^0]: Authors information:
 ${ }^{\text {a }}$ Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, MALAYSIA. E-mail:
 s57042@student.upm.edu.my ${ }^{1}$, athirah@upm.edu.my ${ }^{2}$, cychen@upm.edu.my ${ }^{3}$
 ${ }^{\text {b }}$ Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, MALAYSIA.
 'Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Mataram, Mataram, 83125, INDONESIA. E-mail: mamika@unram.ac.id ${ }^{1}$

[^1]: *Corresponding Author: athirah@upm.edu.my

