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Abstract: To fully understand intricate enzyme reaction models, one must explore beyond the confines of chemical and biological tools 

and look toward mathematical modeling and model reduction techniques. Mathematical modeling and model reduction techniques 

have the potential to provide a vast array of analysis tools for such models. This piece of work entails a review and discussion of a 

complex noncompetitive inhibitor model. This model is composed of seven non-linear differential equations with constant rates. We 

propose two efficient model reduction techniques: quasi- steady-state approximation (QSSA) and quasi-equilibrium approximation 

(QEA). By utilizing the suggested methods, the model equations are segregated into slow and fast subsystems, leading to the attainment 

of reduced models and slow manifolds with fewer variables and parameters. The outcomes manifest some analytical approximate 

solutions for the proposed model and establish a profound agreement between model dynamics for both the original and the reduced 

models. Observing that the reduced models can accurately identify certain critical model parameters is intriguing. 
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1. Introduction 
 

A molecule that hinders the activity of an enzyme is referred 

to as an enzyme inhibitor. An enzyme is a protein molecule that 

catalyzes biological reactions. These molecules can function as 

activators or inhibitors, regulating numerous biological processes. 

Enzymes interact with substrates to produce products. Enzyme 

inhibition can be categorized into two types: reversible and 

irreversible inhibitors. The three types of reversible enzyme 

inhibition are competitive, noncompetitive, and uncompetitive 

[1]. 

 

Mathematical modeling is an essential tool in the scientific 

method, where mathematical statements (or models) are used to 

create hypotheses and predictions. Several classical works have 

investigated models of biochemistry differential equation 

systems. Authors have sought models for biochemical reaction 

networks, such as model reductions, quasi-equilibrium manifold 

approximations, total quasi-steady- state approximations, model 

reductions in chemical dynamics, slow invariant manifolds, 

singular perturbations, thermodynamic estimates, and reaction 

graph analysis. Additionally, mathematical modeling techniques 

have been applied to enzyme inhibitors with slow and fast 

subsystems [2–7]. 

 

Various mathematical models exist, including dynamical 

systems, statistical models, and differential equations. The 

conversion of a concept to a theoretical model and then a 

quantitative model can be achieved in multiple ways. A 

theoretical model is a visual representation of the concept using 

boxes and arrows in a model diagram. The concept of chemical 

kinetics modeling is utilized to convert physical reality into a 

mathematical description. Real-world problems can also be 

expressed using mathematical equations [8–18]. 

 

In systems biology, a mathematical model is an intellectual 

tool used to describe and analyze models. Chemical reactions are 

often complex, and the fundamental characteristics of the 

reaction mechanism must be known to simplify the complexity of 

a complex reaction. Model reduction techniques are necessary to 

create such models. The first theories of complex chemical 

reactions coincided with the development of model reduction 

approaches. Model reduction involves transforming one system 

into another with fewer variables and parameters. Quasi-steady-

state approximation (QSSA) and quasi-equilibrium approximation 

(QEA) are two useful approximation tools in the study of 

biochemical kinetics. These methods are focused on nonlinear 

differential equation systems, where one or more dependent 

variables can be considered in a steady state with respect to the 

instantaneous values of the other dependent variables following 

an initial fast transient [9, 20]. 
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The written work comprises several valuable contributions.   

Firstly, we delve into and examine a multifaceted model of 

uncompetitive inhibitor reactions, which is comprised of seven 

nonlinear differential equations featuring constant rates. We then 

proceed to employ two efficacious techniques for model 

reduction, namely the quasi- steady-state approximation (QSSA) 

and quasi-equilibrium approximation (QEA). Furthermore, we 

have made another significant contribution by dividing the model 

equations into slow and fast subsystems. Additionally, the original 

model equations can be suitably abridged, leading to the 

acquisition of slow manifolds with a fewer number of variables 

and parameters. Ultimately, we identify certain critical 

parameters of the model based on the reduced models that can 

help facilitate further research and enhancements. 

 

2. Chemical Reaction Kinetics 
 

One of the most significant technique theories for modeling is 

the concept of chemical kinetic theory. Model states, parameters, 

and equations are significant assumptions for building such 

models. This is because it helps to examine mathematical 

modeling effectively and conveniently. The generally reversible 

chemical reaction equations can be expressed as follow: 

 

where 𝑘𝑗
𝑓

   and  𝑘𝑗
𝑏  are chemical reaction constants, the real 

numbers 𝑎𝑖  and  𝑏𝑖 stand for the stoichiometric coefficients of the 

corresponding species (reactants and products), species 𝐴𝑖 and 𝐵𝑖 

are the 𝑖𝑡ℎ reactant or product. Let 𝑅𝑏 and 𝑅𝑓 are denoted for 

backward and forward rates respectively then the reaction speed 

of each elementary step 𝑅𝑗 for 𝑗 =  1, 2,… ,𝑚 can be expressed 

as follows:  

 

Using mass action law, the reaction rates for equation 1 are given 

below: 

 

where 𝐴𝑖 and 𝐵𝑖 are the reactants and products species and 

their concentration are 𝐶𝐴𝑖 , 𝐶𝐵𝑖. Finally, the model of kinetic 

differential equations with constant rates are expressed below: 

 

 

where 𝛾𝑗 = 𝑏𝑖𝑗 − 𝑎𝑖𝑗  for 𝑖 =  1, 2,… , 𝑛 and 𝑗 =  1, 2, … ,𝑚 are 

stoichiometric vectors.  

3. Model Reduction Techniques 
Model reduction techniques in systems of complex chemical 

reactions are employed to simplify the mathematical 

representation of the reaction network while preserving the 

essential behavior of the system. These techniques aim to reduce 

computational complexity and facilitate analysis and simulation 

of the chemical kinetics. Here are some commonly used models’ 

reduction techniques in systems of complex chemical reactions:  

 

Quasi-Steady-State Approximation (QSSA): This technique 

assumes that certain species in the reaction network reach a 

quasi-steady state, meaning their concentrations change 

relatively slowly compared to other species. By applying the 

QSSA, the rate equations for these quasi-steady-state species can 

be simplified or eliminated, reducing the dimensionality of the 

system. 

 

Partial Equilibrium Approximation: In systems with fast and 

slow reactions, the partial equilibrium approximation assumes 

that some reactions reach equilibrium much faster than others. 

By assuming rapid equilibration for these reactions, the 

equilibrium concentrations of the involved species can be 

calculated independently of the rest of the system, allowing for 

further simplification. 

 

Species Lumping’s: Species lumping involves grouping 

together similar or unimportant species into lumped species, 

reducing the total number of species in the system. This is often 

done based on chemical similarities or through the use of 

empirical grouping rules. Lumping reduces the dimensionality of 

the system and simplifies the reaction network. 

 

Reaction Lumping’s: Similarly, to species lumping, reaction 

lumping involves combining multiple elementary reactions into 

lumped reactions. This is typically done by identifying reactions 

with similar rate-controlling steps or by lumping re- actions that 

have negligible contributions to the overall system behavior. 

Reaction lumping reduces the number of reactions in the system 

and simplifies the kinetics. 

 

Time-Scale Separation: If the reaction network exhibits 

distinct time scales, it may be possible to simplify the system by 

assuming that some reactions are much faster or slower 

compared to others. This allows for approximations such as 

assuming steady-state or equilibrium conditions for certain 

species or reactions, leading to a reduced model. 

 

Principal Component Analysis (PCA): PCA is a statistical 

technique used to identify dominant modes of variation in a high-

dimensional dataset.  In the context of chemical kinetics, PCA can 

be employed to identify the most important reaction pathways or 

species in the system. By focusing on the dominant modes, a 

reduced model can be constructed that captures the essential 

behavior of the system. 
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These model reduction techniques are often combined or 

adapted based on the specific characteristics of the chemical 

system and the objectives of the analysis. The goal is to strike a 

balance between computational efficiency and accuracy, enabling 

the study and understanding of complex chemical kinetics in a 

more tractable manner. The art of reducing models in intricate 

chemical reaction systems is a widely recognized technique to 

decrease the quantity of constituents such as variables and 

parameters. Although simplified, the dynamics of these models 

should still exhibit a resemblance to their original counterparts. 

The categorization of model equations into their slow and rapid 

subsystems plays a pivotal role in elucidating the model dynamics 

[2, 21]. 

 

The objective of this endeavor is to partition the structure of 

intricate uncompetitive inhibitor mechanisms into sluggish and 

speedy subsystems through the implementation of the quasi-

steady-state approximation (QSSA) and quasi-equilibrium 

approximation (QEA) techniques. Subsequently, the reduced 

models and slow manifolds are generated with a reduced number 

of parameters and variables. The approximated analytical 

solutions for the proposed model demonstrate an excellent 

correspondence between the model dynamics for both the 

original and the reduced models. The quasi-steady-state 

approximation technique has undergone numerous revisions over 

the course of the previous century. In the analysis of biochemical 

kinetics, the quasi-steady-state approximation technique is a vital 

approximation method that can be employed to categorize 

nonlinear models into slow and fast subsystems, as well as to 

derive some analytical approximation solutions [7, 9, 22]. 

Following this method, the variable set 𝐶(𝑡) is divided into two 

groups: the group of slow variables 𝐶𝑆 (𝑡) and the group of fast 

variables 𝐶𝑓  (𝑡). Then kinetic equation   3 can be split into slow 

and fast subsystems: 

 

where equations 4 and 5 are slow and fast subsystems 

respectively, 𝐶𝑠, 𝐶𝑓 are groups of slow and fast variables (basics). 

Based on the Tikhonov theorem, the standard singular 

perturbation can be applied on the fast subsystem and we can 

analyze fast subsystem  5. The slow manifold occurs if we have a 

stable dynamic of fast variables under given values of slow 

concentrations [23, 26]. The attractive slow manifold of the 

system can be calculated from algebraic equation 

 

when 𝜖 →  0. As a result, the new system has fewer variables 

(species concentration) and parameters (chemical reaction 

constants). The concept of quasi-equilibrium approximation 

(QEA) is an effective technique of model reduction to reduce the 

number of variables and parameters. According to this concept, 

fast reactions reach equilibrium very quickly compared to a set of 

slow reactions. We can write the initial system 3 as follows: 

 

where 𝑊𝑠 and 𝑊𝑓 are reaction rate functions, whereas 𝛾𝑠 and 

𝛾𝑓  are stoichiometric vectors and 𝜖 is a small parameter. Then, 

the fast subsystem can be stated as: 

 

By using the algebraic equations  ∑ 𝛾𝑓  𝑊𝑓(𝐶, 𝜅, 𝑡) = 0,𝑓,𝑓𝑎𝑠𝑡  

when 𝜖 →  0 we can calculate the quasi-equilibrium manifold 𝜇0. 

For further information about the approaches described and their 

use in biological and chemical models see [9, 24–26]. 

 

 

4. Reversible Uncompetitive Reaction 

Mechanisms 
Uncompetitive inhibition occurs when an enzyme inhibitor binds 

only to the complex generated between the enzyme and the 

substrate. We can now derive a substrate inhibition equation. For 

substrate S, enzyme E has two binding sites which are a catalytic 

site that generates the product P and a non-catalytic site that 

produces the product at a slower rate. We can write the reaction 

scheme as follows [27] 

 

 

 

 

 

 

 

Figure 1. Chemical Reaction Networks for Uncompetitive 

Inhibitor Mechanisms. 

 

The substrates bound to the catalytic and non-catalytic sites 

are denoted by ES1 and ES2, respectively, and two substrate 

molecules attached to both the catalytic and non-catalytic sites 

are denoted by ES1S2, and 𝑘𝑖 for 𝑖 =  1, 2, . . . , 10 are model 

parameters. By taking the above assumptions, the mathematical 

model reactions and their reaction rates are shown below: 
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𝑬 + 𝑺  𝟏 
𝒌𝟏
  ⇌   
𝒌𝟐

 𝑬𝑺𝟏
𝒌𝟑
→    𝑬 + 𝑷,                                               

𝑬 + 𝑺  𝟐 
𝒌𝟒
  ⇌   
𝒌𝟓

 𝑬𝑺𝟐,                                                                   

𝑬𝑺𝟐 + 𝑺𝟏  
𝒌𝟔
  ⇌   
𝒌𝟕

 𝑬𝑺𝟏𝑺𝟐 ,                                                       (𝟖)

𝑬𝑺𝟏 + 𝑺𝟐  
𝒌𝟖
  ⇌   
𝒌𝟗

 𝑬𝑺𝟏𝑺𝟐 ,                                                              

𝑬𝑺𝟏𝑺𝟐    
𝒌𝟏𝟎
→    𝑬+𝑺𝟐 + 𝑷.                                                            

 

 

Let concentrations of the reactants in 8 denoted by lowercase 

letters as: 

 

where [ ] denotes concentration and 𝑘𝑖 , 𝑖 =  1, 2,· · · , 10 are 

called the rate constants. 

Then the Law of Mass Action applied to 8 leads to one equation 

for each reactant and hence the system of nonlinear reaction 

equations,  

 

 

 

𝑑𝑒

𝑑𝑡
= −𝑘1𝑒𝑠1 + (𝑘2 + 𝑘3)𝑐1 − 𝑘4𝑒𝑠2 + 𝑘5𝑐2 + 𝑘10𝑐3                               

 

 

 𝑑𝑠1
𝑑𝑡
= −𝑘1𝑒𝑠1 + 𝑘2𝑐1 − 𝑘6𝑠1𝑐2 + 𝑘7𝑐3                                            

 

 𝑑𝑠2
𝑑𝑡
= −𝑘4𝑒𝑠2 + 𝑘5𝑐2 − 𝑘8𝑐1𝑠2 + 𝑘9𝑐3 + 𝑘10𝑐3                            

 𝑑𝑐1
𝑑𝑡
= 𝑘1𝑒𝑠1 − 𝑘2𝑐1 − 𝑘3𝑐1 − 𝑘8𝑠2𝑐1 + 𝑘9𝑐3                                          

     

(1) 

 𝑑𝑐2
𝑑𝑡
= 𝑘1𝑒𝑠2 − 𝑘5𝑐2 − 𝑘6𝑐2𝑠1 + 𝑘7𝑐3                                               

 

 𝑑𝑐3
𝑑𝑡
= 𝑘1𝑠1𝑠2 − 𝑘7𝑐3 + 𝑘8𝑐1𝑠2 − 𝑘9𝑐3 − 𝑘10𝑐3                                             

 

 𝑑𝑝

𝑑𝑡
= 𝑘3𝑐1 + 𝑘10𝑐3                                                                                                               

 

The model initial conditions are 𝑒(0) = 𝑒0, 𝑠1(0) = 𝑠1
0, 𝑠2(0) =

𝑠2
0 and  

𝑐1(0) = 𝑐2(0) = 𝑐3(0) = 𝑝 (0) = 0. Based on the proposed 

simple enzymatic reactions, there were a very important 

assumption that the total amount of enzyme is much smaller than 

the amount of substrate, [𝐸] ≪ [𝑆1].  Therefore, we can define a 

very small parameter based on the given condition, 𝜖 =
𝑒0

𝑠1
0 . 
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5. Quasi Steady State Approximation 

The system 9 has the following conservation laws: 

 

e + 𝑐1 + 𝑐2 + 𝑐3 = 𝑒0,   𝑠2 + 𝑐2 + 𝑐3 = 𝑠2
0,    𝑠1 + 𝑐1 + 𝑐3   + 𝑝

= 𝑠1
0.                                                            (10) 

 

By substituting the conservation laws 10 into the system 9, 

and we can eliminate the variables 𝑠2, 𝑐2 and 𝑝 from the system 

9, and then by introducing the following new variables: 

𝜏 = 𝑘1𝑒0,   𝑢1 =
𝑒

𝑒0
,   𝑢2 =

𝑠1

𝑠1
0 ,   𝑤1 =

𝑐1
𝑒0
,     𝑤2 =

𝑐3
𝑒0
.   

 

The system (9) takes the following form: 

 

with initial conditions 𝑢1(0) = 1, 𝑢2(0)  = 1 and 𝑤1(0) = 𝑤2(0) = 0.  Equation 11𝑏 is the slow form while equations 11𝑎, 11𝑐 and 11𝑑 

are fast. Now by using quasi steady-state approximation (QSSA) when 𝜖1  →  0, then sub-equations 11𝑎,  11𝑏, 11𝑐 and 11𝑑 take the form:  

 

After solving equations 12𝑎,12𝑏 and 12𝑐 for 𝑢1, w1 and 𝑤2 in terms of 𝑢2: 

 

 

 

         𝑢1 =
𝛽1 + 𝛽2 + 𝛽3𝑢2

𝛽1 + 𝛽6 + (𝛽3 + 𝛽4 + 𝛽8 + 𝛽10)𝑢2 + (𝛽5 + 𝛽9)𝑢2
2 

 

 

 
        𝑤1 =

𝑢2(𝛽4 +  𝛽5𝑢2)

𝛽1 + 𝛽6 + (𝛽3 + 𝛽4 + 𝛽8 + 𝛽10)𝑢2 + (𝛽5 + 𝛽9)𝑢2
2 

 
(13) 

        𝑤2

=
𝑢2(𝛽8 +  𝛽9𝑢2)

𝛽1 + 𝛽6 + (𝛽3 + 𝛽4 + 𝛽8 + 𝛽10)𝑢2 + (𝛽5 + 𝛽9)𝑢2
2 
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where 

𝛽1 = 𝛼5(𝛼1𝛼6 + 𝛼2𝛼6 + 𝛼1𝛼8 + 𝛼2𝛼8 + 𝛼1𝛼10 + 𝛼2𝛼10), 

𝛽2 = 𝛼4𝛼5(𝛼6 + 𝛼8), 

𝛽3 = 𝛼7(𝛼6(𝛼1 + 𝛼2 + 𝛼4𝛼9) + 𝛼10(𝛼1 + 𝛼2)), 

𝛽4 = 𝛼5(𝛼6 + 𝛼8 + 𝛼10) + 𝛼3𝛼4𝛼7𝛼10, 

  𝛽5 = 𝛼7(𝛼6 + 𝛼10), 

𝛽6 = 𝛼3𝛼2𝛼9(𝛼6 + 𝛼9), 

𝛽7  = 𝛼3𝛼4(𝛼6(𝛼1 + 𝛼2)𝛼8(𝛼1 + 𝛼2)𝛼10(𝛼1 + 𝛼2) + 𝛼4𝛼5𝛼9(𝛼6 + 𝛼8)), 

𝛽8 = 𝛼4𝛼9(𝛼5 + 𝛼3𝛼4𝛼7) + 𝛼3𝛼4𝛼7(𝛼1 + 𝛼2), 

𝛽9 = 𝛼4𝛼7𝛼9, 

𝛽10 = 𝛼4𝛼8𝛼9. 

 

As a result, the approximate solution of the system 11 comes close enough to the manifold µ0, which is defined as follows: 

 

 

 

 

𝜇0 = {(𝑢1, 𝑢2, 𝑤1 , 𝑤2): 𝑢2 ∈ [0,1]}، 

where 

 

 

 
         𝑢1 =

𝛽1 + 𝛽2 + 𝛽3𝑢2

𝛽1 + 𝛽6 + (𝛽3 + 𝛽4 + 𝛽8 + 𝛽10)𝑢2 + (𝛽5 + 𝛽9)𝑢2
2, 

 

 
        𝑤1 =

𝑢2(𝛽4  +  𝛽5𝑢2)

𝛽1 + 𝛽6 + (𝛽3 + 𝛽4 + 𝛽8 + 𝛽10)𝑢2 + (𝛽5 + 𝛽9)𝑢2
2 
, 

      

 

(14) 

 
       𝑤2 =

𝑢2(𝛽8  +  𝛽9𝑢2)

𝛽1 + 𝛽6 + (𝛽3 + 𝛽4 + 𝛽8 + 𝛽10)𝑢2 + (𝛽5 + 𝛽9)𝑢2
2 
,        

 

 

By substituting 13 into 12𝑑, we get the reduced differential equation below, which is close to the manifold µ0. 
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6. Quasi Equilibrium Approximation 
In order to simplify model equations and obtain some analytical solutions, we can use the second method defined as quasi-

equilibrium approximation (QEA) for chemical reaction 8. We can take two separate assumptions for fast reactions, as shown 

below. For first assumption we suppose that the first reaction

  

𝐸 + 𝑆  1 
𝑘1
  ⇌   
𝑘2

 𝐸𝑆1 

becomes quasi-equilibrium when the equilibrium is fast i.e. the parameters can be taken as  𝑘1 = 
1

𝜖
𝑘1
′   and  𝑘2 = 

1

𝜖
𝑘2
′   where 

𝜖 =
𝑒0

𝑠0
    this means that 𝑘1

′ = 𝜖𝑘1  and 𝑘2
′ = 𝜖𝑘2. Then, the system 9 takes the following form: 

 

𝑑𝑒

𝑑𝑡
= −

1

𝜖
𝐻𝑓(𝑒, 𝑠1, 𝑐1, 𝑡) + 𝐻1

𝑠(𝑐1, 𝑡) + 𝐻2
𝑠(𝑒, 𝑠2, 𝑐2, 𝑡) + 𝐻3

𝑠(𝑐3, 𝑡), 
 

 

𝑑𝑠1
𝑑𝑡
= −

1

𝜖
𝐻𝑓(𝑒, 𝑠1, 𝑐1, 𝑡) + 𝐻4

𝑠(𝑠1, 𝑐2, 𝑐3, 𝑡), 
 

𝑑𝑠2
𝑑𝑡
= 𝐻2

𝑠(𝑒, 𝑠2, 𝑐2, 𝑡) + 𝐻3
𝑠(𝑐3, 𝑡) +  𝐻5

𝑠( 𝑠2, 𝑐1, , 𝑐3, 𝑡),  

𝑑𝑐1
𝑑𝑡
=
1

𝜖
𝐻𝑓(𝑒, 𝑠1, 𝑐1, 𝑡)  − 𝐻1

𝑠(𝑐1, 𝑡)  +   𝐻5
𝑠( 𝑠2, 𝑐1, , 𝑐3, 𝑡) 

(15) 

𝑑𝑐2
𝑑𝑡
= −𝐻2

𝑠(𝑒, 𝑠2, 𝑐2, 𝑡)  +  𝐻4
𝑠(𝑠1, 𝑐2, 𝑐3, 𝑡), 

 

𝑑𝑐3
𝑑𝑡
= − 𝐻4

𝑠(𝑠1, 𝑐2, 𝑐3, 𝑡) − 𝐻5
𝑠( 𝑠2, 𝑐1, , 𝑐3, 𝑡) − 𝐻3

𝑠(𝑐3, 𝑡), 
 

𝑑𝑝

𝑑𝑡
= 𝐻1

𝑠(𝑐1, 𝑡) + 𝐻3
𝑠(𝑐3, 𝑡), 

 

 

where 

 𝐻𝑓 (𝑒, 𝑠1, 𝑐1, 𝑡) = 𝑘1
′  𝑒𝑠1 − 𝑘1

′ 𝑐1, 𝐻1
𝑠(𝑐1, 𝑡)  =  𝑘3𝑐1,   

𝐻2
𝑠(𝑒, 𝑠2, 𝑐2, 𝑡) = −𝑘4𝑒𝑠2 + 𝑘5𝑐2,   𝐻3

𝑠(𝑐3, 𝑡) =  −𝑘4𝑒𝑠2 + 𝑘5𝑐2, 

𝐻4
𝑠(𝑠1, 𝑐2, 𝑐3, 𝑡) = −𝑘6𝑠1𝑐2 + 𝑘7𝑐3, 

𝐻5
𝑠(𝑠2, 𝑐1, 𝑐3, 𝑡)  = −𝑘8𝑐1𝑠2 + 𝑘9𝑐3. 

Now, we can apply the quasi-equilibrium approximation (QEA) when 𝜖 → 0. It’s clear that the fast reaction involves three 

species, 𝑆, 𝐸, and 𝐸𝑆, while other chemical reaction components are not considered in the quasi-equilibrium manifold (QEM) 

analysis. According to conservation laws of fast reactions, we obtain two slow variable which defined as: 
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The slow variable 𝜂1 is the total amount of enzyme and 𝜂2 is the sum of the free substrate and the complex of enzyme–substrate. After 

solving the algebraic equation    𝐻𝑓 (𝑒, 𝑠1, 𝑐1, 𝑡) = 0 we can compute the slow manifold µ0 for as follows: 

After finding 𝑒 and s1 from 16 then substituting into algebraic equation 𝐻𝑓 (𝑒, 𝑠1, 𝑐1, 𝑡) = 0, we get the following quadratic 

equation: 

Now, equation 18 can be solved for 𝑐1 as follows: 

The solution for s and e are 

s1(η1, 𝜂2) = 𝜂2 −
1

2
[(𝜂1 + 𝜂2 +

𝑘1
′

𝑘2
′) ± ((𝜂1 + 𝜂2 +

𝑘1
′

𝑘2
′)

2

− 4𝜂1𝜂2)

1
2

] , (20)   

𝑒(η1, 𝜂2) = 𝜂1 −
1

2
[(𝜂1 + 𝜂2 +

𝑘1
′

𝑘2
′) ± ((𝜂1 + 𝜂2 +

𝑘1
′

𝑘2
′)

2

− 4𝜂1𝜂2)

1
2

].    (21)   

For the second assumption, we suppose that 𝐸 + 𝑆  1 
𝑘1
  ⇌   
𝑘2

 𝐸𝑆1 and 𝐸𝑆2 + 𝑆1  
𝑘6
  ⇌   
𝑘7

 𝐸𝑆1𝑆2 are only two fast reversible reactions in the 

model network become quasi-equilibrium when the equilibrium is fast. Let 𝑘1 = 
1

𝜖
𝑘1
′ ,   𝑘2 =  

1

𝜖
𝑘2
′ ,    𝑘6 = 

1

𝜖
𝑘6
′  and 𝑘7 =  

1

𝜖
𝑘7
′  where  

𝜖 =
𝑒0

𝑠0
 this means that 𝑘1

′ = 𝜖𝑘1, 𝑘2
′ = 𝜖𝑘2, 𝑘6

′ = 𝜖𝑘6 and 𝑘7
′ = 𝜖𝑘7. 

Then, the system 9 takes the following form: 
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Now, we can apply the quasi-equilibrium approximation (QEA) when 𝜖 → 0. The fast reaction involves four species, 

𝐸, 𝑆1, 𝑆2 , 𝐸𝑆1, and 𝐸𝑆2, while other chemical reaction components are not considered in the quasi-equilibrium manifold (QEM) 

analysis.  Hence, we obtain three slow variables 𝜂1(𝑒, 𝑐1, 𝑐2) = 𝑒 + 𝑐1 + 𝑐2, 𝜂2(𝑠1, 𝑐1)  =  𝑠1 + 𝑐1 and 𝜂3(𝑠2, 𝑐2) = 𝑠2 + 𝑐2.  

The slow manifold is determined after solving the algebraic equation 𝐻1
𝑓 (𝑒, 𝑠1, 𝑐1, 𝑡) = 0 and  𝐻2

𝑓(𝑒, 𝑠2, 𝑐2, 𝑡) = 0: 

 

By using an assumption that [𝑆1]  ≫ [𝐶1] this means that 𝜂2  ≫ 𝐶1, we get the    following equation: 

 

(1 +
𝜂1
𝜂2
+
𝑘2
′

𝑘1
′𝜂2
) 𝑐1 + 𝑐2 = 𝜂1 + Ο(

𝑐1𝑐2
𝜂2
), 

 

(25) 
(
𝜂3
𝜂2
+
𝜂1
𝜂2
+
𝑘5
′

𝑘4
′ 𝜂2
) 𝑐2 =

𝜂1𝜂3
𝜂2

+ Ο(
𝑐1𝑐2
𝜂2
). 

 

The approximation solution of 𝑐1 and 𝑐2 become: 

𝑐1(𝜂1, 𝜂2) ≈
𝜂1𝜂2( 𝜂1 + 𝑘6

′ )

(𝜂1 + 𝜂3 + 𝑘6
′ )(𝜂1 + 𝜂2 + 𝑘7

′ )
, 

 

(26) 

𝑐21(𝜂1, 𝜂3) ≈
𝜂1𝜂3

(𝜂1 + 𝜂3 + 𝑘6
′ )
. 

  Where 𝑘6
′ =

𝑘5
′

𝑘4
′   and  𝑘7

′ =
𝑘2
′

𝑘1
′ . Furthermore, other variables 𝑒, 𝑠1𝑎𝑛𝑑 𝑠2 are obtained as follows:  

𝑒(𝜂1, 𝜂2, 𝜂3) =
𝜂1( 𝜂1 + 𝑘6

′ )( 𝜂1 + 𝑘7
′ )

(𝜂1 + 𝜂3 + 𝑘6
′ )(𝜂1 + 𝜂2 + 𝑘7

′ )
, 

 

(27) 

 

𝑠1(𝜂1, 𝜂2, 𝜂3) = 𝜂2 −
𝜂1𝜂2( 𝜂1 + 𝑘6

′ )

(𝜂1 + 𝜂3 + 𝑘6
′ )(𝜂1 + 𝜂2 + 𝑘7

′ )
, 

𝑠2(𝜂1, 𝜂2, 𝜂3) =
𝜂1( 𝜂3 + 𝑘6

′ )

(𝜂1 + 𝜂3 + 𝑘6
′ )
. 

 

7. Conclusions 
 

For intricate kinetic systems, reductions in modeling can play 

a significant role in obtaining analytical approximations. In this 

manuscript, we have implemented two model reduction 

techniques on the intricate model of uncompetitive inhibitor 

mechanisms. Both methodologies are instrumental in reducing 

the model into a more concise form in terms of parameters and 

variables. Firstly, we utilized the quasi-steady-state 

approximation (QSSA), which allowed us to calculate slow 

manifolds by partitioning the original model equations into slow 

and fast subsystems. The fast subsystems can be efficiently 

analyzed. Secondly, we employed the quasi- equilibrium 

approximation (QEA) to classify the reaction rates into slow and 

fast reactions, which enabled us to investigate the concentrations 

of species involved in fast reactions. Then, the fast reactions were 

studied and simplified. Therefore, the proposed model reduction 

techniques in this study can be further improved and applied to a 

wide range of complex mechanisms in systems biology.  
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