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Abstract: A mathematical model is designed to examine plant growth under stress in the presence of toxicity with a delay. It is observed 
that toxic substances change the soil's structure and activity, which has a negative impact on the concentration of nutrients there. The 
deficiency of soil nutrients and the presence of toxicity are significant elements affecting total biomass. It has been noted that the 
presence of toxicity changes the physiology and growth of the plant, which ultimately reduces crop growth and production. This adverse 
effect of toxicity is only seen after an incubation period and is demonstrated by considering the delay in the state variable. Additionally, 
Hopf bifurcation is observed for the crucial value of the delay parameter. Utilising explicit techniques, the direction and stability of 
bifurcating periodic solutions are found. Sensitivity analysis is used to determine the sensitivity of solutions of the model when the values 
of parameters are varied. MATLAB is used for simulation.  
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1. Introduction 

 

Plants uptake nutrients from the soil for proper growth as part 

of the plant-soil interaction process. Macronutrients and 

micronutrients are the two major types of nutrients found in soil. 

The macronutrients found in soil, including phosphorus, 

potassium, nitrogen, calcium, hydrogen and carbon, are 

advantageous resources that support plant growth. Nickel, zinc 

and copper are often present in soil at extremely low 

concentrations and play important roles in plant growth. 

However, some heavy metals, including chromium, cadmium, 

lead, mercury, nickel, etc., have a negative impact on soil quality 

[1] [2]. Excessive levels of heavy metals poison the soil and 

gradually affect plant growth [3]. Numerous factors, including 

geological, social, economic and biological ones, contribute to the 

rise in toxic heavy elements in the soil. Additionally, nutrients play 

a significant role in discrete plant growth, which has an impact on 

nonlinear population growth dynamics and, ultimately, on the 

yield of standing crops [4]. Metals or toxicity cause an imbalance 

in the soil's nutrition levels. The presence of toxicity affects both 

the biomass of trees and plants. Thornley was the first to 

experiment with mathematical modelling in plant physiology by 

considering various climatic change factors, such as humidity, 

temperature, rainfall, transpiration, respiration, rate of 

photosynthesis and guard cells of stomata, among others. 

However, these models were limited to specific plant species and 

conditions [5][6]. A mathematical model is proposed to justify the 

fact that toxic metals have a negative impact on tree biomass [7]. 

Biomass is negatively affected by the primary and secondary 

toxicity domains [8]. Also, nutrients have a crucial role in discrete 

plant growth, influencing the dynamics of nonlinear population 

increase and, ultimately, the yield of standing crops. Another 

factor affecting crop yield and crop growth is geographical 

location [9]. According to a mathematical model, a plant's growth 

rate is a dynamic process that depends on factors like plant size, 

decreased growth rate and nutrient mortality rate [10]. Delay was 

utilised to learn the combined impact of acid and toxic metals on 

plant populations [11]. The distribution of exponential polynomial 

roots is explained by Rouches's Theorem (1960). Ruan and Wei 

(2001) used Rouches' theorem for their consideration of the 

distribution of exponential polynomial roots [12]. As plant 

biomass decreases under the influence of toxicity, the variable 

oscillates for the delay value [13]. Delay was utilised to study the 

global stability in the collection of non-linear differential 

equations [14] [15]. It is possible to establish the direction of Hopf 

bifurcation as well as various numerical simulations using Hassard 

et al.'s manifold and normal form [16] [17]. The delay differential 

equations are used to construct the direct and adjoint approaches 

for sensitivity analysis in bioscience numerical modelling [18]. The 

sensitivity analysis for a system of nonlinear differential equations 

with time lags is performed using the 'Direct method' [19]. A 

generalised method for sensitivity analysis of the delay 

differential equation is suggested [20] [21]. In relation to the 

delays, theoretical conclusions for sensitivity are presented. The 

periodic responses to delay differential equations are studied 

using a parametric sensitivity analysis [22].  
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2. Mathematical Model 
 

Assume that 𝑁 is the plant nutrient concentration, 𝐵 is the quantity of plant biomass and 𝑇 is the amount of toxicity concentration in the 
plant, all of which serve as three state variables. These are used to model the dynamics of plant growth. The formulation of the model is as 
follows:  
 
𝑑𝑁

𝑑𝑡
= 𝑁0 − 𝛼1𝑁(𝑡 − 𝜏)𝐵 − 𝛼2𝑁 − 𝛼3𝑁𝑇                             [1]  

 
𝑑𝐵

𝑑𝑡
= 𝑟𝐵 (1 −

𝐵

𝐾
) + 𝛽1𝑁(𝑡 − 𝜏)𝐵 − 𝛽2𝐵                 [2] 

 
𝑑𝑇

𝑑𝑡
= 𝑇𝑜 − 𝛾1𝑁𝑇 − 𝛾2𝑇                         [3] 

 
Initially: 𝑁(0) > 0, 𝐵(0) > 0, 𝑇(0) > 0 ∀ 𝑡 and 𝑁(𝑡 − 𝜏) = constant for 𝑡 ∈ [−𝜏, 0]. 
 
The parameters are as follows: 𝑁0 represents the fixed amount of nutrients that are available; 𝑇0 denotes the fixed amount of toxicity that 
are available in soil because of the presence of toxic metals; 𝑟 represents the growth rate of the plant; 𝐾 represents the carrying capacity; 𝛼1 
is the rate of consumption of nutrients by biomass; 𝛼3 is the rate of decay of nutrients due to its interaction with toxicity; 𝛽1 is the utilisation 
coefficient of nutrients; and 𝛾1 is the rate of toxicity decay due to interaction with nutrients. The rates of natural decay for 𝑁, 𝐵 and 𝑇 are 
𝛼2, 𝛽2 and 𝛾2, respectively. Here, it is assumed that all parameters 𝛼1, 𝛼2,  𝛼3, 𝛽1, 𝛽2, 𝛾1, 𝛾2,𝑁, 𝐵 𝑎𝑛𝑑 𝑇 are positive. 

 
Boundedness 
Lemma 1: Consider the function, 𝑊 = 𝑁 + 𝐵 + 𝑇 

such that, 
𝑑𝑊

𝑑𝑡
=

𝑑𝑁

𝑑𝑡
+

𝑑𝐵

𝑑𝑡
+

𝑑𝑇

𝑑𝑡
 

Using equations (1)–(3), 
𝑑𝑊(𝑡)

𝑑𝑡
= 𝑁𝑜 − 𝛼1𝑁𝐵 − 𝛼2𝑁 − 𝛼3𝑁𝑇 + 𝑟 (1 −

𝐵

𝐾
) + 𝛽1𝑁𝐵 - 𝛽2𝐵 + 𝑇𝑜 − 𝛾1𝑁𝑇 − 𝛾2𝑇 and 

𝑚𝑖𝑛(𝛼1, 𝛼2, 𝛼3, 𝛽1 , 𝛽2, 𝛾1, 𝛾2) = 𝛿 and assuming 𝑁 ≈  𝑁(𝑡 − 𝜏) as 𝑡 → ∞ , 
𝑑𝑊(𝑡)

𝑑𝑡
≤ (𝑁𝑜 + 𝑇𝑜 ) 

By Comparison theorem as 𝑡 → ∞, 𝑊 ≤
𝑁𝑜+𝑇𝑜

𝛿
 ,so 0 ≤ (𝑁 + 𝐵 + 𝑇) ≤

𝑁𝑜+𝑇𝑜

𝛿
 

 
Positivity of Solutions 
Positivity of system defines that model's solution, with initial data, will eventually be positive for all ∀ 𝑡 exceeding some finite value. It is 
crucial to demonstrate that every solution provided by the equations is a positive solution. Considering equations (1)–(3), where initial 
condition is 𝑁(0) > 0, 𝐵(0) > 0, 𝑇(0) > 0 ∀ 𝑡 𝑎𝑛𝑑 𝑁(𝑡 − 𝜏) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑡 ∈ [−𝜏, 0], the model solution (𝑁, 𝐵, 𝑇 ) remains positive 
∀ for all time 𝑡 > 0. 

Using equation (3), 
𝑑𝑇

𝑑𝑡
≥ −𝛿(𝑁 + 1)𝑇 i.e.  

𝑑𝑇

𝑑𝑡
≥ −((𝑁𝑜 + 𝑇𝑜 ) + 𝛿)𝑇 , 𝑇 ≥ 𝑐1𝑒−((𝑁𝑜+𝑇𝑜 )+𝛿)𝑡, here 𝑐1 is constant of integration. So, T > 0 ∀ 𝑡. 

For 𝑁 and 𝐵, the same argument is valid. 
 
Interior Equilibrium Point 
A mathematical model under consideration has an equilibrium point that defines a constant solution. We identify the internal equilibrium 
𝐸∗ of the model. For the set of equations (1)–(3), there is only one possible equilibrium at 𝐸∗(𝑁∗, 𝐵∗, 𝑇∗).  

𝑁∗ =  
−𝑏 ∓ √𝑏² − 4𝑎𝑐

2𝑎
 

𝑇∗ =
𝑇𝑜 

𝛾1𝑁∗ − 𝛾2
 

𝐵∗ =
𝐾

𝑟
(𝑟 − 𝛽1𝑁∗ − 𝛽2) 

 
Where a = 𝛼₁𝐾𝛽1𝛾1, b = 𝛼₁𝛾1𝐾 𝑟 − 𝛼₁𝐾𝛽2𝛾1 − 𝛼₁𝐾𝛽1𝛾2 + 𝛼₂𝛾1𝑟 , c = 𝛼1𝐾 𝑟 + 𝛼₁𝐾𝛽2𝛾1 − 𝛼₂𝛾2𝑟 + 𝛼3𝑇𝑜  
 
Analysis of Hopf bifurcation 
This section analyses the dynamical internal equilibrium point behaviour 𝐸∗(𝑁∗, 𝐵∗, 𝑇∗) of model (1)–(3). In relation to the equilibrium 𝐸∗, 
the exponential characteristic equation is provided by 

𝜆3 + 𝑃1𝜆2 + 𝑃2𝜆 + 𝑃3 + (𝑄1𝜆2+ 𝑄2𝜆 + 𝑄3)𝑒‐𝜆𝜏 = 0                                                                               [4], 

where 𝑃1 = 𝛼2 + 𝛼3 𝑇 +
𝑟

𝑘
+ 𝛽2 + 𝛾1𝑁 + 𝛾2, 

𝑃2 =
𝑟

𝑘
𝛼2 +

𝑟

𝑘
𝛼3𝑇 + 𝛽2𝛼2 + 𝛽2𝛼3𝑇 +

𝑟

𝑘
𝛾1𝑁 +

𝑟

𝑘
𝛾2 + 𝛽2𝛾1𝑁 + 𝛽2𝑁2 + 𝛼2𝛾1𝑁 + 𝛾1𝑁𝛼3 + 𝛾2𝛼2 + 𝛾2𝛼3𝑇, 

𝑃3 =  
𝑟

𝑘
𝛼2𝛾1𝑁 +

𝑟

𝑘
 𝛼2𝛾2 + 𝛼2𝛽2𝛾1𝑁 + 𝛼2𝛽2𝛾2 +

𝑟

𝑘
𝛼3𝛾1𝑁𝑇 +

𝑟

𝑘
𝛼3𝛾2𝑇 + 𝛼3𝛽2𝛾1𝑁𝑇 + 𝛼3𝛽2𝛾2𝑇‐ 𝛾1𝛼3𝑇𝑁, 

𝑄1 = 𝛼1𝐵, 

                                              𝑄2 =
𝑟

𝑘
𝛼1𝐵 + 𝛽2𝛼1𝐵 + 𝛾1𝛼1𝑁 + 𝛾2𝛼1𝐵, 

𝑄3 =
𝑟

𝑘
𝛼1𝛾1𝐵𝑁 +

𝑟

𝑘
𝛼1𝛾2𝐵 + 𝛼2𝛽2𝛾1𝐵𝑁 + 𝛼1𝐵2𝛾2𝐵 
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Clearly, 𝑃1, 𝑃2, 𝑃3, 𝑄1, 𝑄2, 𝑄3 all are positive. 
Equation (4) can only be solved if and only if 𝜆 = 𝑖𝜔 is true. 

(𝑖𝜔)3 + 𝑃1(𝑖𝜔)2 + 𝑃2(𝑖𝜔) + 𝑃3 + (𝑄1(𝑖𝜔)2 + 𝑄2(𝑖𝜔) + 𝑄3)𝑒‐𝑖𝜔𝜏 = 0                                         [5] 
 
Separating the real and imaginary parts, we get the following equations: 
 
𝑃3 − 𝑃𝜔2 + (𝑄3 − 𝑄1𝜔2)𝑐𝑜𝑠 𝜔𝜏 + 𝑄2𝜔 sin 𝜔𝜏 = 0                                                        [6] 
 
𝑃2𝜔 − 𝜔3 + 𝑄2𝜔 𝑐𝑜𝑠 𝜔𝜏 − (𝑄3 − 𝑄1𝜔2) sin 𝜔𝜏 = 0                                            [7] 
 
This further gives: 
 

 𝜔6 + (𝑃1
2 − 𝑄1

2 − 2𝑃2)𝜔4 + (𝑃2
2 − 𝑄2

2 + 2𝑄1𝑄3 − 2𝑃1𝑃3)𝜔2 + (𝑃3
2 − 𝑄3

2) = 0          [8]                                                                                                                                                            

 
Let  

𝑢 = (𝑃1
2 − 𝑄1

2 − 2𝑃2), 𝑣 = (𝑃2
2 − 𝑄2

2 + 2𝑄1𝑄3 − 2𝑃1𝑃3), 𝑧 = (𝑃3
2 − 𝑄3

2). 

 
Let 𝜔2 = 𝑥 , then equation (8) becomes 𝑥3 + 𝑢𝑥2 + 𝑣𝑥 + 𝑧 = 0.             [9]        
 
Claim 1: If 𝑧 < 0, equation (9) has one real positive zero. 
Proof: Consider 𝑠(𝑥) = 𝑥3 + 𝑢𝑥2 + 𝑣𝑥 + 𝑧.  
Here, 𝑠(0) = 𝑧 < 0 and lim

𝑥→∞
𝑠(𝑥) = ∞. So, ∃ 𝑧0 ∈ (0, ∞) such that 𝑠(𝑥0) = 0.  

 
Claim 2: If 𝑧 ≥ 0, 𝐷 = 𝑢2 − 3𝑣 ≥ 0 is a necessary condition for the existence of positive real roots in equation (9). 
Proof: Since 𝑠(𝑥) = 𝑥3 + 𝑢𝑥2 + 𝑣𝑥 + 𝑧, therefore 𝑠′(𝑥) = 3𝑥2 + 2𝑢𝑥 + 𝑣. 
 
𝑠′(𝑥) = 0 implies 3𝑥2 + 2𝑢𝑥 + 𝑣 = 0.                                                                [10]      
 

The roots of equation (10) can be written as 𝑥1,2 =
−2𝑢∓√4𝑢2−12𝑣

6
=

−𝑢∓√𝐷

3
                                   [11]   

 
There are no real roots in equation (10) if 𝐷 < 0. Consequently, the function 𝑠(𝑥) is an increasing monotone function in 𝑥. Since 𝑘(0) = 𝑧 ≥
0, therefore positive real roots cannot exist in equation (9). It has been proven. 

Clearly if 𝐷 ≥ 0, then 𝑥1 =
−𝑢+√𝐷

3
 is the local minima of 𝑠(𝑥). Hence, the following assertion. 

Claim 3: If 𝑧 ≥ 0, and only if 𝑥1 > 0 and 𝑠(𝑥1) ≤ 0, equation (9) has positive real. 
Proof: It is clear that there is enough. There is only one requirement: necessity. If not, assume that 𝑠(𝑥) > 0 and either 𝑥1 ≤ 0 or 𝑥1 > 0. 

Consequently, 𝑠(𝑥) has no positive real zeros if 𝑥1 ≤ 0 since 𝑠(𝑥) is rising for 𝑥 ≥ 𝑥1 and 𝑠(0) = 𝑐 ≥ 0. Since 𝑥2 =
−𝑢−√𝐷

3
 is the local 

maximum value if 𝑥1 > 0 and 𝑠(𝑥1) > 0, it follows that 𝑠(𝑥1) ≤ 𝑠(𝑥2). Because 𝑠(𝑥) lacks positive real roots, 𝑠(0) = 𝑐 ≥ 0. Proof is now 
complete. 
 
Lemma 2: Assume that equation (11) defines 𝑥1. 

(I) If 𝑧 < 0, at least a positive real zero exists in equation (9). 
(II) If 𝑧 ≥ 0 and 𝐷 = 𝑢2 − 3𝑣 < 0, no positive zeros can be found for equation (9). 
(III) If 𝑧 ≥ 0, there are positive zeros in equation (9) if 𝑥1 > 0 and 𝑠(𝑥1) ≤ 0 .   

Proof: Assume that equation (9) has roots that are positive. Suppose it has three constructive roots without losing generality, signified by 𝑥1, 

𝑥2 , 𝑎𝑛𝑑 𝑥3. Then equation (8) has three positive roots, denoted by 𝜔1 = √𝑥1 , 𝜔2 = √𝑥2 , 𝑎𝑛𝑑 𝜔3 = √𝑥3 . 

Using equation (7), sin 𝜔𝜏 =
𝑃2𝜔−𝜔3

𝑑
 

Which gives 𝜏 =
1

𝜔
[𝑠𝑖𝑛−1 (

𝑃2𝜔−𝜔3

𝑑
) + 2(𝑗 − 1)𝜋] ; 𝑗 = 1,2,3, − 

Let 𝜏𝑘
(𝑗) =

1

𝜔𝑘
[𝑠𝑖𝑛−1 (

𝑃2𝜔𝑘−𝜔𝑘
3

𝑑
) + 2(𝑗 − 1)𝜋] ; 𝑘 = 1,2,3 . ; 𝑗 = 0, 1, 2, − − − 

Then ∓𝑖𝜔𝑘  form a pair of equation (8) roots that are entirely imaginary. 

Where 𝜏 = 𝜏𝑘
(𝑗), 𝑘 = 1, 2, 3. ; 𝑗 = 0, 1, 2, 3, − −, lim

𝑗→∞
𝜏𝑘

(𝑗) = ∞ 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1, 2, 3. 

 Thus, we define 𝜏0 = 𝜏𝑘0

(𝑗0) = min
1≤𝑘≤3,𝑗≥1

[𝜏𝑘
(𝑗)] , 𝜔0 = 𝜔𝑘0

, 𝑥0 = 𝑥𝑘0

⬚                        [12]           

    
Lemma 3: Assume that 𝑃1 > 0, (𝑃3 + 𝑑) > 0, 𝑎𝑛𝑑 𝑃1𝑃2 − (𝑃3 + 𝑑) > 0. 

(I) The real part of very root of equation (4) is negative ∀ 𝜏 ≥ 0 if 𝑧 ≥ 0 and 𝐷 = 𝑢2 − 3𝑣 < 0. 
(II) The real part of every root of equation (4) is negative ∀ 𝜏 ∈ [0, 𝜏0) if 𝑧 < 0 o 𝑧 ≥ 0, 𝑥1 > 0 and 𝑠(𝑥1) ≤ 0.  

Proof: When 𝜏 = 0, equation (4) changes to: 
𝜆3 + (𝑃1 + 𝑄1)𝜆2 + (𝑃2 + 𝑄2)𝜆 + (𝑃3 + 𝑄3) = 0.                                [13] 
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Using Routh-Hurwitz's criteria, (H1): 𝑖𝑓 (𝑃3 + 𝑄3) > 0, (𝑃1 + 𝑄1)(𝑃2 + 𝑄2) − (𝑃3 + 𝑄3) > 0, then all the roots in equation (4) have negative 
real parts. 
If 𝑧 ≥ 0 and 𝐷 = 𝑢2 − 3𝑣 < 0, equation (4) does not have any roots with a real part of zero ∀ 𝜏 ≥ 0 according to Lemma 2 (II). When 𝑧 < 0 

or 𝑧 ≥ 0, 𝑥 > 0 and 𝑠(𝑥1) ≤ 0, Lemma 2 (I) and (III) implies that when 𝜏 ≠ 𝜏𝑘
(𝑗), 𝑘 = 1, 2, 3. ; 𝑗 ≥ 1, Since 𝜏0 is the smallest value of 𝜏 and 

equation (4) only has imaginary roots, it does not have any real roots with any real parts. The result is obtained using the theorem 1. 
 
Suppose 𝜆(𝜏) = 𝜓(𝜏) + 𝑖𝜔(𝜏)                                                                                                   [14] 
 
being the roots of the equation (4) holds: 𝜓(𝜏0) = 0, 𝜔(𝜏0) = 𝜔0. 
Assume that 𝑠′(𝑥0) ≠ 0 to ensure that ∓𝜔0 are simple and purely imaginary roots of equation (4), as 𝜏 = 𝜏0 and 𝜆(𝜏) satisfies the 
transversality requirement. 
 
Lemma 4: Assume that 𝑥0 = 𝜔0

2. If 𝜏 = 𝜏0, then Sign [𝜓′(𝜏0)] =Sign [𝑠′(𝑥0)]. 
Proof: Differentiating with respect to 𝜏 and inserting 𝜆(𝜏) into equation (4) results in the following: 

 
𝑑𝜆

𝑑𝜏
[3𝜆2 + 2𝑃1𝜆 + 𝑄2 + ((𝑄1𝜆2 + 𝑄2𝜆 + 𝑄3)(−𝜏) + (2𝑄1𝜆 + 𝑄2))𝑒−𝜆𝜏] = 𝜆(𝑄1𝜆2 + 𝑄2𝜆 + 𝑄𝑛3)𝑒−𝜆𝜏  

Then (
𝑑𝜆

𝑑𝜏
)

−1
=

(3𝜆2+2𝑃1𝜆+𝑃2)𝑒𝜆𝜏

𝜆(𝑄1𝜆2+𝑄2𝜆+𝑄3)
+

(2𝑄1𝜆+𝑄2)

𝜆(𝑄1𝜆2+𝑄2𝜆+𝑄)
−

𝜏

𝜆
 

From equations (6) - (8): 

𝜇′(𝜏0) = 𝑅𝑒 [
(3𝜆2+2𝑃1𝜆+𝑃2)𝑒𝜆𝜏

𝜆(𝑄1𝜆2+𝑄2𝜆+𝑄3)
] + 𝑅𝑒 [

(2𝑄1𝜆+𝑄2)

𝜆(𝑄1𝜆2+𝑄2𝜆+𝑄3)
] =

1

 ∆
[3𝜔0

6 + 2𝑢𝜔0
4 + 𝑣𝜔0

2] 

Where ∆= [(𝑄3 − 𝑄𝜔2)2 + (𝑄2𝜔)2]. In this case, ∆ > 0 and 𝜔0 > 0. 
Consequently, it is proved that Sign [𝜓′(𝜏0)] =Sign [𝑠′(𝑥0)].  
 

3. Direction Analysis and Stability Analysis of The Hopf Bifurcation Solution  

 

Assuming that y1 = 𝑁 − 𝑁∗, 𝑦2 = 𝐵 − 𝐵∗ , 𝑦3 = 𝑇 − 𝑇∗ and time scaling as well as normalising the delay 𝜏 , 𝑡 →
𝑡

𝜏
 , equation (1)–(3) become: 

𝑑𝑦1

𝑑𝑡
= −𝛼2𝑦1 − 𝛼1𝐵∗𝑦1(𝑡 − 1) − 𝛼1𝑦1(𝑡 − 1)𝑦2 − 𝛼3𝑇∗𝑦1 − 𝛼3𝑁∗𝑦3 − 𝛼3𝑦1𝑦3                                    [15] 

 
𝑑𝑦2

𝑑𝑡
=

𝑟

𝑘
𝑦2 − 𝛽2𝑦2 + 𝛽1𝑁∗𝑦1(𝑡 − 1) + 𝛽1𝑦1(𝑡 − 1)𝑦2                                                             [16] 

 
𝑑𝑦3

𝑑𝑡
= −𝛾1𝑇∗𝑦1 − 𝛾1𝑁∗𝑦3 − 𝛾2𝑦3 − 𝛾1𝑦1𝑦3                                                                                           [17] 

 

Thus, work can be done in the phase 𝐶 = 𝐶 ((−1,0), 𝑅+
3). Without loss of generality, denote the critical value 𝜏𝑗  by 𝜏0. Let 𝜏 = 𝜏0 + 𝜇, then 

𝜇 = 0 is a Hopf bifurcation value of the system given by equations (15)–(17). Rewrite this system as follows for notational simplicity: 
 
𝑦′(𝑡) = 𝐿𝜇(𝑦𝑡) + 𝐹(𝜇, 𝑦𝑡)                                   [18] 

 
Where 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡) )𝑇 ∈ 𝑅3, 𝑦𝑡(𝜃) ∈ 𝐶 is defined by 𝑦𝑡(𝜃) = 𝑦𝑡(𝑡 + 𝜃), and  
 𝐿𝜇: 𝐶 → 𝑅, 𝐹: 𝑅 × 𝐶 → 𝑅 are provided, respectively by  

𝐿𝜇𝛿 =  (𝜏0 + 𝜇) [

−(𝛼2 + 𝛼3𝑇∗) 0 −𝛼3𝑁∗

0 − (
𝑟

𝑘
+ 𝛽2) 0

−𝛾1𝑇∗ 0 −(𝛾1𝑁∗ + 𝛾2)

]   [

𝛿1(0)

𝛿2(0)

𝛿3(0)
] + (𝜏0 + 𝜇) [

−𝛼1𝐵∗    

−𝛽1𝐵∗    

0

 
0
0
0

         
0
0
0

] [
 𝛿
 𝛿
 𝛿

 

(−1)
(−2)
(−3)

]  

and 𝐹(𝜇, 𝛿) = (𝜏0 + 𝜇) [

𝐹1

𝐹2

𝐹3

] respectively where 𝐹1 = −𝛼1𝛿1(−1)𝛿2(0),  

𝐹2 = 𝛽1𝛿1(−1)𝛿2(0), 𝐹3 = −𝛾1𝛿1(0)𝛿3(0), 

𝛿(𝜃) = (𝛿1(𝜃), 𝛿2(𝜃), 𝛿(𝜃))
𝑇

∈ 𝐶((−1,0), 𝑅).  

According to the Riesz theorem, a function 𝜂(𝜃, 𝜇) is constrained variation for 𝜃 ∈ [−1,0], such that 𝐿𝜇𝛿 = ∫ 𝑑
0

−1
𝜂(𝜃, 0)𝛿(𝜃) for 𝛿 ∈ 𝐶. 

Choose in reality. 

𝜂(𝜃, 𝜇) = (𝜏0 + 𝜇) [

−(𝛼2 + 𝛼3𝑇∗) 0 −𝛼3𝑁∗

0 − (
𝑟

𝑘
+ 𝛽2) 0

−𝛾1𝑇∗ 0 −(𝛾1𝑁∗ + 𝛾2)

] 𝛿(𝜃) + (𝜏0 + 𝜇) [
−𝛼1𝐵∗    

−𝛽1𝐵∗    

0

 
0
0
0

         
0
0
0

] 𝛿(𝜃 + 1)  

Here, 𝛿 ∈ 𝐶([−1,0], 𝑅+
3) define 

𝐴(𝜇)𝛿 = {

𝑑𝛿(𝜃)

𝑑𝜃
, 𝜃 ∈ [−1,0)

∫ 𝑑
0

−1
𝜂(𝜃, 0)𝛿(𝜃), 𝜃 = 0.

       And         𝑅(𝜇)𝛿 = {
0, 𝜃 ∈ [−1,0)

𝐹(𝜇, 𝛿) 𝜃 = 0.
 

The equation (18) then corresponds to: 
 
𝑦′(𝑡) = 𝐴(𝜇)𝛿 + 𝑅(𝜇)𝑦𝑡                       [19] 
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For 𝜓 ∈ 𝐶1([−1,0], 𝑅+
3), state 

𝐴∗𝜓(ℎ) = {
−

𝑑𝜓(ℎ)

𝑑𝑠
, ℎ ∈ [−1,0)

∫ 𝑑
0

−1
𝜂𝑇(−𝑡, 0)𝜓(−𝑡), ℎ = 0.

   

 
And bilinear inner product 
 

< 𝜓(ℎ), 𝛿(𝜃) > = 𝜓(0)𝛿(0) − ∫ ∫ 𝜓(𝜉 − 𝜃)𝑑𝜂(𝜃)𝛿(𝜉)
𝜃

𝜉=𝜃

0

−1
𝑑𝜉                        [20] 

 
Since 𝐴∗ and 𝐴 = 𝐴(0) are adjoint operators, and 𝑖𝜔0 are eigen values of 𝐴(0), they are also eigen values of 𝐴∗. Assuming that 𝑞(𝜃) =

𝑞(0)𝑒𝑖𝜔0𝜃 is an eigen vector of 𝐴(0) corresponding to the eigen value 𝑖𝜔0. Then 𝐴(0) =  𝑖𝜔0 𝑞(𝜃). When 𝜃 = 0,  
 

[𝑖𝜔0𝐼 − ∫ 𝑑𝜂(𝜃)𝑒𝑖𝜔0𝜃0

−1
]  𝑞(0) = 0, the outcome is 𝑞(0) = (1, 𝜎1, 𝜌1)𝑇   

 

𝜎1 =
(𝛼1𝐵∗+(𝛼2+𝛼3𝑇∗)−𝑖𝜔0)

𝛼3𝑁∗
 𝑎𝑛𝑑 𝜌1 =

𝛽1𝐵∗((
𝑟

𝑘
+𝛽2)−𝑖𝜔0)

(
𝑟

𝑘
+𝛽2)

2
+𝜔0

2
  

 

Similarly, it can be confirmed that 𝑞∗(𝑠) = 𝐷(1, 𝜎2, 𝜌2)𝑒𝑖𝜔0𝜏0𝑠 is the eigen value of 𝐴∗ that corresponds to −𝑖𝜔0, where: 
 

𝜎1 =
(𝛼1𝐵∗+(𝛼2+𝛼3𝑇∗)−𝑖𝜔0)

𝛼3𝑁∗  𝑎𝑛𝑑 𝜌1 =
𝛽1𝐵∗((

𝑟

𝑘
+𝛽2)−𝑖𝜔0)

(
𝑟

𝑘
+𝛽2)

2
+𝜔0

2
  

 
To ensure < 𝑞∗(𝑠), 𝑞(𝜃) > = 1, it is necessary to calculate the value of D. 
 
From equation (22), < 𝑞∗(𝑠), 𝑞(𝜃) >  
 

 = 𝐷(1, 𝜎2, 𝜌2)(1, 𝜎1, 𝜌1)𝑇 − ∫ ∫ 𝐷(1, 𝜎2, 𝜌2)𝑒−𝑖𝜔0𝜏0(𝜉−𝜃)𝑑𝜂(𝜃)(1, 𝜎1, 𝜌1)𝑇𝑒𝑖𝜔0𝜏0
𝜃

𝜉=𝜃

0

−1
𝑑𝜉  

= 𝐷 {1 + 𝜎1𝜎2 + 𝜌1𝜌2 − ∫ (1, 𝜎2, 𝜌2)
0

−1
𝜃𝑒𝑖𝜔0𝜏0𝜃(1, 𝜎1, 𝜌1)𝑇}   

= 𝐷{1 + 𝜎1𝜎2 + 𝜌1𝜌2 + 𝜏0𝜎2𝑊∗(𝛽1𝜌1 − 𝛼1𝜎1)𝑒𝑖𝜔0𝜏0}  

 

Hence, select 𝐷 =
1

(1+𝜎1𝜎2+𝜌1𝜌2+𝜏0𝜎2𝐵∗(𝛽1𝜌1−𝛼1𝜎1)𝑒𝑖𝜔0𝜏0)
  

 

This ensures that < 𝑞∗(𝑠), 𝑞(𝜃) > = 1, < 𝑞∗(𝑠), 𝑞(𝜃) > = 0.  
 
The coordinates characterising the centre manifold 𝐶0 at 𝜇 = 0 are computed by applying the algorithm described in [16] and using their 
notations. Assume 𝑦𝑡 as a solution of equation (18) at 𝜇 = 0. Therefore: 
𝑧(𝑡) =< 𝑞∗(𝑠), 𝑦𝑡(𝜃) >, 𝑊(𝑡, 𝜃) = 𝑦𝑡(𝜃) − 2𝑅𝑒(𝑧(𝑡)𝑞(𝜃))                        [21] 

On the centre manifold 𝐶0, 𝑊(𝑡, 𝜃) = 𝑊 (𝑧(𝑡), 𝑧(𝑡), 𝜃) 

Where 𝑊(𝑧, 𝑧, 𝜃) = 𝑊20(𝜃)
𝑧2

2
+ 𝑊11(𝜃)𝑧𝑧 + 𝑊02(𝜃)

𝑧
2

2
+ ⋯. 

Local coordinates for the centre of the manifold 𝐶0 are z and 𝑧 towards 𝑞∗ and 𝑞∗ . Consider that 𝑊 is real if 𝑦𝑡 is real. Only real solutions 
should be taken into consideration. For the solution 𝑦𝑡 ∈ 𝐶0 of equation (20), since 𝜇 = 0, 

𝑧′(𝑡) = 𝑖𝜔0𝜏0𝑧+< 𝑞∗(𝜃), 𝐹(0, 𝐵(𝑧, 𝑧, 𝜃) + 2𝑅𝑒(𝑧(𝑡)𝑞(𝜃)) ) >  

= 𝑖𝜔0𝜏0𝑧 + 𝑞∗(0) 𝐹(0, 𝑊(𝑧, 𝑧, 0) + 2𝑅𝑒(𝑧(𝑡)𝑞(𝜃)) )  

≡ 𝑖𝜔0𝜏0𝑧 + 𝑞∗(0)𝐹0(𝑧, 𝑧) 
Rewrite this equation as: 
𝑧′(𝑡) = 𝑖𝜔0𝜏0𝑧(𝑡) + 𝑔(𝑧, 𝑧)                                         [22] 
 

Where 𝑔(𝑧, 𝑧) = 𝑞∗(0)𝐹0(𝑧, 𝑧) = 𝑔20(𝜃)
𝑧2

2
+ 𝑔11(𝜃)𝑧𝑧 + 𝑔02(𝜃)

𝑧
2

2
+ 𝑔21(𝜃)

𝑧2𝑧

2
+ ⋯                [23] 

 

As 𝑦𝑡(𝜃) = (𝑦1𝑡 , 𝑦2𝑡, 𝑦3𝑡) =  𝑊(𝑡, 𝜃) + 𝑧 𝑞(𝜃) + 𝑧𝑞(𝜃) and 𝑞(0) = (1, 𝜎1, 𝜌1)𝑇𝑒𝑖𝜔0𝜏0𝜃, so 

𝑦1𝑡(0) = 𝑧 + 𝑧 + 𝑊20
(1)(0)

𝑧2

2
+ 𝑊11

(1)(0) 𝑧𝑧 + 𝑊02
(1)(0)

𝑧
2

2
+ ⋯, 

𝑦2𝑡(0) = 𝜎1𝑧 + 𝜎1 𝑧 + 𝑊20
(2)(0)

𝑧2

2
+ 𝑊11

(2)(0) 𝑧𝑧 + 𝑊02
(2)(0)

𝑧
2

2
+ ⋯, 

𝑦3𝑡(0) = 𝜌11𝑧 + 𝜌11 𝑧 + 𝑊20
(3)(0)

𝑧2

2
+ 𝑊11

(3)(0) 𝑧𝑧 + 𝑊02
(3)(0)

𝑧
2

2
+ ⋯, 
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𝑦1𝑡(−1) = 𝑧𝑒−𝑖𝜔0𝜏0 + 𝑧𝑒𝑖𝜔0𝜏0 + 𝑊20
(1)(−1)

𝑧2

2
+ 𝑊11

(1)(−1) 𝑧𝑧 + 𝑊02
(1)(−1)

𝑧
2

2
+ ⋯, 

𝑦2𝑡(−1) = 𝜎1𝑒−𝑖𝜔0𝜏0𝑧 + 𝜎1 𝑒𝑖𝜔0𝜏0  𝑧 + 𝑊20
(2)(−1)

𝑧2

2
+ 𝑊11

(2)(−1) 𝑧𝑧 + 𝑊02
(2)(−1)

𝑧
2

2
+ ⋯, 

Thus, comparing coefficients to equation (23) provides: 

 𝑔20 = 𝐷(1, 𝜎1, 𝜌1)𝑓𝑧2 , 𝑔02 = 𝐷(1, 𝜎1, 𝜌2 )𝑓
𝑧

2 , 

 𝑔11 =  𝐷(1, 𝜎1, 𝜌2 )𝑓𝑧𝑧, 𝑔21 =  𝐷(1, 𝜎1, 𝜌2 )𝑓𝑧2𝑧.  
For clarification of 𝑔21, computation must be the main focus of 𝑊20(𝜃) and 𝑊11(𝜃). From equations (19) and (21):  

𝑊′ = 𝑢𝑡
′ − 𝑧′𝑞 − 𝑧

′
𝑞 = {

𝐴𝑊 − 2𝑅𝑒[𝑞∗(0)𝐹0𝑞(𝜃)], 𝜃 ∈ [−1,0)

𝐴𝑊 − 2𝑅𝑒[𝑞∗(0)𝐹0𝑞(0)] + 𝐹0, 𝜃 = 0
  

Let 𝑊′ = 𝐴𝑊 + 𝐻(𝑧, 𝑧, 𝜃)                     [24] 

Where 𝐻(𝑧, 𝑧, 𝜃) = 𝐻20(𝜃)
𝑧2

2
+ 𝐻11(𝜃)𝑧𝑧 + 𝐻02(𝜃)

𝑧
2

2
+ 𝐻21(𝜃)

𝑧2𝑧

2
+ ⋯,                      [25] 

As opposed to that, on 𝐶0 at the origin 𝑊′ = 𝑊𝑧𝑧′ + 𝑊𝑧𝑧
′
. 

The above series is expanded, the coefficients are calculated and the result is: 
[𝐴 − 2𝑖𝜔0𝐼]𝑊20(𝜃) = −𝐻20(𝜃), 𝐴𝑊11(𝜃) = −𝐻11(𝜃)                         [26] 
By equation (22), for 𝜃 ∈ [−1,0]: 

𝐻(𝑧, 𝑧, 𝜃) = −𝑞∗(0)𝐹0𝑞(𝜃) − 𝑞∗(0)𝐹0 𝑞(𝜃) = −𝑔𝑞(𝜃) − 𝑔  𝑞(𝜃)  
Comparing the coefficients with (23) for 𝜃 ∈ [−1,0]: 
𝐻20(𝜃) = −𝑔20𝑞(𝜃) − 𝑔02 𝑞(𝜃), 𝐻11(𝜃) = −𝑔11𝑞(𝜃) − 𝑔11 𝑞(𝜃). 
From equation (22), (25) and the definition of 𝐴, we obtained: 
𝑊20(𝜃) = 2𝑖𝜔0𝜏0𝑊20(𝜃) + 𝑔20𝑞(𝜃) + 𝑔02 𝑞(𝜃) 
Solving for 𝑊20(𝜃): 

𝑊20(𝜃) =
𝑖𝑔20

𝜔0𝜏0
𝑞(0)𝑒𝑖𝜔0𝜏0𝜃 +

𝑖𝑔02

3𝜔0𝜏0
𝑞(0)𝑒−𝑖𝜔0𝜏0𝜃 + 𝐸1𝑒2𝑖𝜔0𝜏0𝜃,  

and similarly 

𝑊11(𝜃) =
−𝑖𝑔11

𝜔0𝜏0
𝑞(0)𝑒𝑖𝜔0𝜏0𝜃 +

𝑖𝑔11

𝜔0𝜏0
𝑞(0)𝑒−𝑖𝜔0𝜏0𝜃 + 𝐸2,  

where 𝐸1 and 𝐸2 are both three dimensional vectors and can be determined by setting 𝜃 = 0 in 𝐻. In fact since 𝐻(𝑧, 𝑧, 𝜃) =

−2𝑅𝑒[𝑞∗(0)𝐹0𝑞(0)] + 𝐹0, So 

𝐻20(𝜃) = −𝑔20𝑞(𝜃) − 𝑔02 𝑞(𝜃) + 𝐹𝑧2,  
 𝐻11(𝜃) = −𝑔11𝑞(𝜃) − 𝑔11 𝑞(𝜃) + 𝐹𝑧𝑧 

Where 𝐹0 = 𝐹𝑧2
𝑧2

2
+ 𝐹𝑧𝑧𝑧𝑧 + 𝐹

𝑧
2

𝑧
2

2
+ ⋯  

Hence combining the definition of 𝐴,  

∫ 𝑑
0

−1
𝜂(𝜃)𝑊20(𝜃) = 2𝑖𝜔0𝜏0𝑊20(0) + 𝑔20𝑞(0) + 𝑔02 𝑞(0) − 𝐹𝑧2 and  

∫ 𝑑
0

−1
𝜂(𝜃)𝑊11(𝜃) = 𝑔11𝑞(0) − 𝑔11 𝑞(0) − 𝐹𝑧𝑧 

Notice that  

[𝑖𝜔0𝜏0𝐼 − ∫ 𝑒𝑖𝜔0𝜏0𝜃𝑑𝜂(𝜃)
0

−1
] 𝑞(0) = 0 and [−𝑖𝜔0𝜏0𝐼 − ∫ 𝑒−𝑖𝜔0𝜏0𝜃𝑑𝜂(𝜃)

0

−1
] 𝑞(0) = 0, 

which implies 

[2𝑖𝜔0𝜏0𝐼 − ∫ 𝑒2𝑖𝜔0𝜏0𝜃𝑑𝜂(𝜃)
0

−1
] 𝐸1 = 𝐹𝑧2 and − [∫ 𝑑𝜂(𝜃)

0

−1
] 𝐸2 = 𝐹𝑧𝑧 

Hence,  

[

(2𝑖𝜔0 + 𝛼2 + 𝛼3𝑇∗ + 𝛼1𝐵∗𝑒−2𝑖𝜔0𝜏0) 0 −𝛼3𝑁∗

−𝛽1𝑊∗𝑒−2𝑖𝜔0𝜏0 (2𝑖𝜔0 +
𝑟

𝐾
+ 𝛽2) 0

𝛾1𝑇∗ 0 (2𝑖𝜔0 + 𝛾1𝑁∗ + 𝛾2)

] 𝐸1 = −2 [
𝛼1𝜎1𝑒−𝑖𝜔0𝜏0𝜃

𝛽1𝜎1𝑒−𝑖𝜔0𝜏0𝜃

−𝛾1𝜌1

] and  

[

(𝛼2 + 𝛼3𝑇∗ + 𝛼1𝐵∗) 0 −𝛼3𝑁∗

−𝛽1𝑊∗ (
𝑟

𝐾
+ 𝛽2) 0

𝛾1𝑇∗ 0 (𝛾1𝑁∗ + 𝛾2)

] 𝐸2 = −2 [

𝛼1𝑅𝑒{𝜎1}𝑒𝑖𝜔0𝜏0𝜃

−𝛽1𝑅𝑒{𝜎1}𝑒𝑖𝜔0𝜏0𝜃

−𝛾1𝑅𝑒{𝜌1}

]  

 Consequently, the parameters can express 𝑔21. 
Using the parameters, each 𝑔𝑖𝑗  can be determined based on the study mentioned above. Consequently, the following values can be 

calculated: 

𝐶1(0) =
𝑖

2𝜔0𝜏0
(𝑔11𝑔20 − 2|𝑔11|2 −

|𝑔02|2

3
) +

𝑔21

2
 , 𝜇2 = −

𝑅𝑒{𝐶1(0)}

𝑅𝑒{𝜆′(𝜏0)}
, 𝛽2 = 2𝑅𝑒{𝐶1(0)},  

 

𝑇2 = −
𝐼𝑚{𝐶1(0)}+𝜇2𝐼𝑚 {𝜆′(𝜏0)}

𝜔0𝜏0
                               [27] 

 
Theorem 2: The value of 𝜇2 can be determined by the direction of the Hopf bifurcation: if 𝜇2 > 0(𝜇2 < 0), then the Hopf bifurcation is 
supercritical (subcritical) and the bifurcating periodic solutions exists for 𝜏 > 𝜏0 (𝜏 < 𝜏0). The value of 𝛽2 can determine the stability of 
bifurcating solutions: the bifurcating periodic solutions are orbitally asymptotically stable (unstable) if 𝛽2 < 0 (𝛽2 > 0 ). The bifurcating 
periodic solutions is determined by the value of 𝑇2: the period increases (decreases) if 𝑇2 > 0 (𝑇2 < 0 ). 
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4. Numerical Stimulation 
MATLAB simulation is used to numerically consolidate the analytical findings. The system behaves as follows: 
𝑁𝑜 = 3.17, 𝛼1 = 0.22, 𝛼2 = 0.001, 𝛼3 = 0.0009, 𝑟 = 1.89, 𝛽1 = 0.2, 𝛽2 = 0.001,𝑇𝑜 = 2.06, 𝛾1 = 0.06, 𝛾2 = 0.001  
Figure 1 shows that when there is no delay parameter 𝜏, the system is stable. Plant nutrients concentration (N), plant biomass (B) and toxicity 
(T) show no fluctuation in their natural growth. Figures 2 and 3 show that when the delay parameter 𝜏 increased from 0 to 1.24, the system 
shows limit cycles or perturbation early on but finally stabilises; this is called asymptotically behaviour. Figures 4 and 5 show that when the 
delay parameter 𝜏 crosses the critical value of 1.25, the limit cycle of same period and same direction continue together and Hopf bifurcation 
occurs. 
 

 
Figure 1. When there is absence of delay, i.e. 𝜏 = 0, the system interior equilibrium point 𝐸1 is stable. 

 
Figure 2. When there is delay, i.e. 𝜏 < 1.25, the system interior equilibrium point 𝐸1 is asymptotically stable. 
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Figure 3. The phase space representation of toxicity (T), plant biomass (B) and nutrients (N) with a delay of 𝜏 < 1.25. 

 

 
Figure 4. When there is delay, i.e. 𝜏 >1.25, the system's interior equilibrium point 𝐸1 loses its stability and shows Hopf bifurcation. 

 
 

 
Figure 5. The phase space representation of toxicity (T), plant biomass (B) and nutrients (N) with a delay of 𝜏 > 1.25. Asymptotically and 

orbitally stable is the bifurcating periodic solution. 
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Sensitivity Analysis 
The model has constant parameters in this study. To calculate the global sensitivity coefficient, the 'Direct Method' is utilised. For each 
parameter the partial derivatives of the solution can be found, may be all that is required for sensitivity analysis in this situation if all of the 
parameters (𝛼1, 𝛼2, 𝛼3, 𝛽1 , 𝛽2, 𝛾1, 𝛾2) present in the system (1)–(3) are assumed to be constants. Taking derivative partially of the solution 
(𝑁, 𝐵 𝑎𝑛𝑑 𝑇) in relation to the 𝛽1, the set of sensitivity equations shown below are produced.  
 
𝑑𝑆1

𝑑𝑡
= −𝛼1𝑁(𝑡 − 𝜏)𝑆2 − 𝛼1𝐵𝑆1(𝑡 − 𝜏) − 𝛼2𝑆1 + 𝛼3𝑁𝑆3 − 𝛼3𝑇𝑆1                                              [28] 

 
𝑑𝑆2

𝑑𝑡
= −

𝑟

𝑘
𝑆2 + 𝛽1𝑁(𝑡 − 𝜏)𝑆2 − 𝛽1𝐵𝑆1(𝑡 − 𝜏) − 𝛽2𝑆2                                                                 [29] 

 
𝑑𝑠3

𝑑𝑡
= −𝛾1𝑁𝑆3 − 𝛾1𝑇𝑆1 − 𝛾2𝑆3                                                                                                        [30] 

 

Here 𝑆1 =
𝜕𝑁

𝜕𝛽1
, 𝑆2 =

𝜕𝑊

𝜕𝛽1
, 𝑆3 =

𝜕𝑀

𝜕𝛽1
 

The nutrient concentration becomes unstable when 𝛽1 = 0.2 and Hopf bifurcation occurs. But when the utilisation coefficient declines from 
𝛽1 = 0.2 to 𝛽1 = 0.18, the graph becomes asymptotically stable, and it exhibits stability at 𝛽1 = 0.12 as shown in Figure 6.  Similarly, as 𝛽1  
drops from 𝛽1 = 0.2 to 𝛽1 = 0.12, as shown in Figures 8 and9, the amount of plant biomass produced and the toxicity decreases respectively. 
 

 
Figure 6. For various values of the utilisation coefficient 𝛽1, a time series graph shows the relationship between small variations in nutrients 

concentration 𝑁. 
 

 
Figure 7. For various values of the utilisation coefficient 𝛽1, time series graph shows the relationship between small variations in biomass 𝐵 
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Figure 8. For various values of the utilisation coefficient 𝛽1, a time series graph shows the relationship between small variations in toxic 

metal 𝑇. 
 

5. Conclusion 
In this paper, we investigated the impact of delay on the dynamics 
of plant growth when toxic metals are present. Stable equilibrium, 
Hopf bifurcation, periodic oscillations, sensitivity analysis, 
directional analysis and other dynamic phenomena are all seen. 
Based on some numerical simulations, we draw the conclusion 
that for some parameter values, the stability and Hopf bifurcation 
about interior equilibrium 𝐸∗ can occur. It has been verified that 
interior equilibrium 𝐸∗ is stable in the absence of a delay (Figure 
1). For a critical value below (𝜏 ≤ 1.25) of the parameter delay, 
the system was asymptotically stable (Figures 2 and 3). The 
proposed model became unstable and showed oscillations when 
𝜏 ≥ 1.25 (Figures 4 and 5). It was concluded that after taking time 
lag into account, limit cycles are observed for interior equilibrium 
points when time delay exceeds a certain critical value. For state 
variables at the interior equilibrium with respect to the system 
parameters, sensitivity indices were calculated in the 
mathematical model (1)–(3). The 'direct method' was used to 
evaluate sensitivity of state variables by changing the parameter 
𝛽1 included in delay differential systems (28)–(30). Analysis of 
sensitivity demonstrate that the state variable 
𝑁, 𝐵 𝑎𝑛𝑑 𝑇 significantly change their rate of oscillations for 
various values of the parameter 𝛽1 . Figures 6–8 depict this 
phenomenon of sensitivity graphically.  
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