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ABSTRACT The block hybrid-like method is presented and implemented in predictor-corrector mode to solve 

system of first order ordinary differential equations. The block method is applied to provide the approximation for 

both the main and off-step points concurrently. The stability properties of the method are investigated. Some 
illustrative examples are presented to demonstrate the efficiency of the block hybrid-like method.   
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INTRODUCTION 

 

 

We consider the first order ordinary differential 

equations (ODEs) 

     (   ) (1) 

 

with initial condition  ( )     for        . Eq. (1) 
is frequently found in many physical problems. Several 

researchers have proposed the numerical block methods 

to solve first order ODEs. The major advantage of the 

block methods is that in each of its implementation, the 

solution is approximated at few points concurrently. 

Ibrahim et al. [9] and Musa et al. [14] suggested the 

block backward differentiation formula methods for 

stiff ODEs. Akinfenwa et al. [2] introduced the block 

hybrid backward differential formula method based on 

the interpolation and collocation of the basic 

polynomial. Lee [11] proposed the 2-point and 3-point 

block methods based on backward difference form for 

non-stiff ODEs. Omar and Suleiman [15] implemented 

the parallel 2-point block method of variable step size 

and order for system of non-stiff ODEs. Mehrkanoon et 

al. [13] applied the four-point implicit block multistep 

method for solving system of (1) in variable step size. 

All these block methods ([9], [13], [14], [15]) estimate 

the solutions of   at few main points concurrently. 

 

Many researchers have also shown their interest on the 

block hybrid methods that find the approximation of   

at both the main and off-step points simultaneously. In 

the study of Enright and Higham [7], it demonstrated 

that the precise location of the off-step points was 

efficiently used to minimize the interpolation errors and 

to develop various cheap strategies for step size control. 

Akinfenwa et al. [3] proposed the implicit two step 

hybrid block collocation method with four off-steps 

points. James et al. [10] suggested the one step block 

hybrid method with five off-step points. Akinfenwa et 

al. [3] and James et al. [10] applied the interpolation 

and collocation on basic polynomial to derive the 

method. However, the implementation is slightly 

different. Akinfenwa et al. [3] implemented the 

proposed method as the self starting method that does 

not require the starting values to proceed while James et 

al. [10] implemented the proposed method in predictor-

corrector mode. Abasi et al. [1] derived the block 

hybrid method based on backward differentiation 

formula and interpolation polynomial that interpolates 

the value of   at two main points and two off-step 

points. 

 

Here, we are going to apply the block hybrid-like 

method in predictor-corrector mode to solve system of 

first order ODEs (1). The implementation of this 

method approximates the solution of y at the main point 

     and the off-step point    
 
 

  simultaneously. 

 

 

DERIVATION OF IMPLICIT BLOCK HYBRID-

LIKE METHOD 

 

In this section, we explain the mathematical 

formulation of the implicit block hybrid-like method 

that based on numerical integration. The derivation 

involves the divided differences that relative to both the 

main and off-step points. 
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Main Point Method 

 

We define the main point as           and 

integrate the first order differential equation (1) from    

to      on both sides, it then leads to 

 

 ∫   ( )
    

  
   ∫  (   )

    

  
     (2) 

 

Next, we define the interpolation polynomial to 

interpolate  (   ) and substitute in (2) 

 

 (    )   (  )  ∫   ( )
    

  

    

with   
      

 
. By changing the limit of integration 

and replace        , we obtain 

 

 (    )   (  )  ∫   (       ) 
 

  

   

                  (  )   (∫  
 

  

          

  ∫  
 

  

    [    
 
     ]

   ∫  ( 
 

  

 
 

 
)     [       

 
     ]   )  

  

 

Here, we consider the terms up to  [       
 
     ] 

with 

 

 

              

 [    
 
     ]  

 

 
(         

 
)   

 [      
 
 
     ]  

 

  
(         

 
 
   )  

 

After simplified, we obtain 

          (
 

 
     

 

 
 

  
 

 

 
 

 
  )  (3) 

 

Off-step Point Method 

 

 

Similarly, we define the off-step point as  
  

 

 

    

 

 
 . Integrate (1) from    to  

  
 

 

 and replace  (   ) 

with interpolation polynomial gives 

 

 (    
 
)   (  )

  (∫  
 

 
 

 

   [    
 
]

  ∫  
 

 
 

 

   [       
 
]

   ∫   ( 
 

 
 

 

 
 

 
)   [    
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where   
    

  
 
 

 
 and  

 

 [    
 
]      

 
  

 [       
 
]  

 

 
(    

 
   )   

 [    
 
        

 
]  

 

  
(    

 
         

 
)  

 

After simplified, we obtain 

     
 
     (

 

  
 

  
 

 

 
 

 
   

 

  
 

  
 

 

)  (4) 

 

We combine the main point method (3) and the off-step 

point method (4) as the implicit block hybrid-like 

method. 

 

 

THE PREDICTOR 

 

Let the off-step and main points be defined as  
  

 

 

 

   
 

 
  and          , respectively. Similar 

technique has been applied to obtain the explicit 

method as the predictor. It leads to 

 

 (    
 
)   (  )

  (∫  

 

 

 

       

  ∫  

 

 

 

   [   
 
 
   ]

   ∫   ( 

 

 

 

 
 

 
)    [         
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and 

 (    )   (  )   (∫  
 

 

       

  ∫  
 

 

   [    
 
   ]

   ∫   ( 
 

 

 
 

 
)    [        

 
 
   ]) 

 

with   
    

 
. Substitute the divided difference with 

 

          

 [    
 
   ]  

 

 
(       

 
)   

 [         
 
   ]  

 

  
(        

 
     )  

 

After simplified, we develop the explicit block hybrid-

like method as follows 

 

    
 
     (

  

  
   

 

 
    

 
 

 

  
    )  

         (
  

 
   

  

 
 

  
 

 

 
 

 
    )  

 

 

 

STABILITY ANALYSIS 

 

To analyze the stability property of the implicit block 

hybrid-like method, we apply the standard test equation 

      where   is the complex parameter. 

 

    
 
     (

 

  
  

  
 

 

 
 

 
    

 

  
  

  
 

 

)  

         (
 

 
      

 

 
  

  
 

 

 
 

 
   )  

 

 
It can also be shown in matrix finite difference equation 

as follows 

(     )     (     )   
 

with 

 

  [
  
  

]    [

 

  
 

 

 

 

 

]    [
  
  

]  

  [
 

 

  

 

 

 
 

 

]        [
 
  

 
 

    
]     [

 
  

 
 

  
]  

 

The stability polynomial is given by 

 

 ( )     [(    ̅)  (    ̅)] 
 

where  ̅    . By taking  ( )   , it leads to 

 

(  
  ̅

 
 

  ̅ 

   
)    (  

  ̅

  
 

  ̅ 

  
)  

 (
 ̅

  
 

 ̅ 

   
)     

 

The stability polynomial is solved for  ̅ which gives 

| |    whereby the stability region is obtained by 

tracing the values of  ̅. Fig. 1 presents the stability 

region for the implicit block hybrid-like method. The 

region of absolute stability lies inside the boundary. 

 

 

 
 

Figure 1. Stability region for implicit block hybrid-like 

method 

 

 

By solving  ( )    and    , the first characteristic 

polynomial is determined as follows 

 

        
 

Since the roots of the first characteristic polynomial 

have modulus at most one, this implies the zero stability 

of the implicit block hybrid-like method. 
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NUMERICAL EXAMPLES 

To assert the effectiveness of our approach, we provide 

the numerical evidence by considering the following 

test problems.  

 

Problem 1: See [4] 

  
        (       )     

  
       (    )         

  ( )  
 

 
   ( )              

Exact solution:   ( )        ( )     

 

Problem 2: See [5] 

  
             ( )  

 

  ,    

  
  

 

           ( )  
 

  ,        ;  

Exact solution: 

   ( )           ( )         

Problem 3: See [8] 

  
  

 

 (   )
          ( )   ,    

  
  

 

 (   )
          ( )   ,        ;  

Exact solution: 

   ( )  √           ( )  √          

Problem 4: See [12] 

  
       ( )   ,   

  
       ( )      

  
           ( )   ,  

  
          ( )   ,          

 

Exact solution: 

   ( )         ( )            

  ( )           ( )                  

Problem 5: See [12] 

  
       ( )   ,           

  
       ( )     

  
              ( )      

  
                  ( )       

Exact solution: 

   ( )          ( )              

  ( )             ( )             

 

Problems 1 to 3 are the coupled of first order ODEs 

while Problems 4 and 5 cover the systems of four first 

order ODEs. Tables I to V present the numerical results 

for solving Problems 1 to 5. The explicit and implicit 

block hybrid-like methods are implemented in 

predictor-corrector mode to solve these systems in 

constant step size. The numerical comparison is made 

between the block hybrid-like method and the existing 

Adams method. The notations used in the table take the 

following meaning 

 

    Step size. 

Max  Maximum error for the computed solution 

ADM  Adams method of order three (See [6]). 

I1P  Implicit block hybrid-like method of order 

three. 
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0.05 I1P 
ADM 

            
            

0.01 I1P 
ADM 

             
            

0.005 I1P 
ADM 

             
             

0.001 I1P 
ADM 

             
             

0.0005 I1P 
ADM 

             
             

0.0001 I1P 
ADM 

             
             

 

 

0.05 I1P 
ADM 

            
            

0.01 I1P 
ADM 

             
            

0.005 I1P 
ADM 

             
             

0.001 I1P 
ADM 

             
             

0.0005 I1P 
ADM 

             
             

0.0001 I1P 
ADM 

             
             

 

 

0.05 I1P 
ADM 

            
            

0.01 I1P 
ADM 
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ADM 
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Figure 2. Efficiency curve for Problem 1 
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Table 1. Numerical Results for Problem                  
   h                 Method              Max 

Table 4. Numerical Results for Problem 4       
  h               Method    Max 

Table 2. Numerical Results for Problem 2 

h         Method    Max 
Table 5. Numerical Results for Problem 5 

h       Method    Max 

Table 3. Numerical Results for Problem 3 

  h       Method   Max 
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Figure 3. Efficiency curve for Problem 2 

 

 
Figure 4. Efficiency curve for Problem 3 

 

 
Figure 5. Efficiency curve for Problem 4 

 
Figure 6. Efficiency curve for Problem 5 

 

 

DISCUSSION AND CONCLUSION 

 

The numerical results in Tables 1 to 5 demonstrate that 

the implicit block hybrid-like method outperforms the 

existing Adams method of same order when solving 

systems of first order ordinary differential equations. 

The efficiency curves in Fig. 2 to 6 also clearly show 

that the newly proposed method is more efficient 

compared to existing Adams method. It is apparent that 

the block hybrid-like method manages to achieve better 

accuracy as the step size getting smaller. It can also be 

deduced that the inclusive of off-step point to find the 

approximation of   at the main point helps to improve 

the accuracy. 

 

As a whole, we have presented the block hybrid-like 

method that can be used on wider interval and 

demonstrates the superiority in providing higher order 

of accuracy for systems of first order ordinary 

differential equations.  
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