

Malaysian Journal of Science 33 (1): 68-77 (2014)

68

AN IMPROVED LIGHT-WEIGHT MATCHMAKING MECHANISM FOR

DISCOVERING OWL-S SERVICES BASED ON SPARQL, BIPARTITE AND NLP

APPROACH

M.Deepa Lakshmi*¹, Dr. Julia Punitha Malar Dhas²

¹Research Scholar, N.I University, Kumaracoil, K.K.Dist., Tamil Nadu, India

²Professor & Head, Dept. of CSE, N.I University, Kumaracoil, K.K.Dist., Tamil Nadu, India

*deepasuresh12@gmail.com (Corresponding Author)

ABSTRACT Semantic Web services integrate the meaningful content of the Semantic Web with the business

logic of Web services and thus enable industries and individuals to access these services. But as the number of

available Web services increase, there is a growing demand for a mechanism for effective retrieval of required

services. We propose an improved Semantic Web service discovery method for finding OWL-S (Web Ontology

Language for Services) services by combining functional similarity matching (using bipartite graph) and textual

similarity matching. However, discovering relevant Semantic Web service is a heavyweight task. Performance

of service discovery is significantly reduced when the number of services increases. To overcome this issue, a

lightweight filtering stage is also introduced before the discovery mechanism. Filtering is performed by

semantic-based SPARQL (Simple Protocol and RDF Query Language) query. It will significantly reduce the

input for the discovery process. Thus the search space and the time required to find the relevant services will be

reduced. The proposed techniques are applied to a sample test collection and experimental results are presented,

which demonstrate the effectiveness of the idea.

 (Keywords: discovery, filtering, OWL-S, Semantic Web service, SPARQL)

INTRODUCTION

Today there exist a vast amount of tools that support

and facilitate the development, deployment and

invocation of Web services, and there are virtually no

limits as to what Web services can do within their

realm. With the rapid development of Web services,

retrieval of relevant services has become a challenge.

The keyword-based discovery mechanism using

Universal Description, Discovery and Integration [1]

and Web Service Description Language [2] is

inefficient due to the retrieval of a large amount of

irrelevant information. This is due to the lack of

semantic information of the service. The Semantic

Web initiative addresses this problem by creating a set

of XML (eXtensible Markup Language) based

documents and ontology. Semantic Web services

integrate the meaningful content of the Semantic Web

with the business logic of Web services and thus

enable all to access these services. But as the number

of available Web services increase, there is a growing

demand for a mechanism for effective retrieval of

required services.An important component of the

discovery process is the matchmaking algorithm. In

order to overcome the limitations of existing syntax-

based search,

match-making algorithms based on semantic

techniques have been proposed. Most of them are

based on an algorithm originally proposed by Paolucci

[3]. This is a logic-based semantic matchmaking

approach and so has certain limitations. At this

juncture, improving the existing discovery mechanism

constitutes a vital step. Therefore, we propose an

improved Semantic Web service discovery method by

modifying the Paolucci’s algorithm using bipartite

matching of Input / Output (I/O) parameters. In

addition, one of the crucial steps in an efficient Web

service search is to understand what users mean in

their request. The search request is usually in the form

of natural language. Most of the current popular

discovery algorithms expect that the user request

(Query) be given only as an OWL-S query. But, this

work searches through the set of Web services for

matches with a user query, which consists of just

keywords, so that knowledge about semantic

languages is not required. A text-based similarity

match is performed on the description of Web service.

Several discovery techniques are already available to

discover services. But, the ability to deal with a large

search space of available services is a major issue that

is not addressed in these discovery techniques. In order

to overcome this problem, there are some proposals

that provide different techniques to improve the

discovery performance, such as indexing or caching

Malaysian Journal of Science 33 (1): 68-77 (2014)

69

descriptions [4], using several matchmaking stages and

hybrid approaches [5] that include non-semantic

techniques. In our work, this issue is addressed by

filtering services using SPARQL query.

Services can be described using OWL-S, WSMO

(Web Service Modeling Ontology), SAWSDL

(Semantic Annotations for WSDL and XML Schema),

WSMO-Lite which defines the features and

functionality of services in terms of input, output

parameters, and non-functional aspects. In this work,

OWL-S service [6] descriptions are considered. The

following implementations are done using Java as part

of our work.

 Preprocessing:-

o Exact Filtering [7] (Existing System)

o Semantic-based Filtering (Proposed

 System)

 Matchmaking:-

o Paolucci’s algorithm (Existing System)

o Bipartite matching algorithm [8]

 (Existing System)

o Bipartite with text-based matching

 (Proposed System)

 Proposed bipartite with text-based matching

 after performing semantic-based filtering

Using OWL-S TC2 (Test Collection version 2), we

tested our algorithm and compared it with existing

approaches. The experimental results have shown that

the proposed approach could discover the most

relevant advertised services corresponding to user’s

request and provide better recall rate and acceptable

precision compared to other approaches.

The rest of the paper is organized as follows: Section

II highlights some related works. Section III explains

major existing approaches. Section IV presents an

overview of proposed approaches. Our evaluations are

presented in Section V. Finally, in Section VI we

present the conclusion.

RELATED WORK

Majority of current Semantic Web service discovery

algorithms perform logic-based service profile

matching, and are restricted to OWL-S. The most

influencing among them is Paolucci’s algorithm [3],

which has been cited in subsequent proposals. Paolucci

proposed an ontology-based solution, in which

matching of input and output parameters of services

are done according to the hierarchical concept

subsumption relationships defined in an ontology tree.

There are four semantic similarity grades: Exact,

Subsumes, Plugln, and Fail. Li and Horrocks [12] used

a DAML-S based ontology and a Description Logic

reasoner to compare ontology based service

descriptions. They extended the degrees of match of

Paolucci’s work by adding an intersection match. The

hybrid semantic service matchmaker FCMATCH [13]

performs a combined logic-based and text similarity-

based matching of monolithic service and query

concepts written in OWL-DL. Lamparter [14] presents

an approach to hybrid matching of monolithic logic-

based service descriptions in OWL-DL extended with

pricing policies (modeled in DL-safe SWRL rules)

according to given references by means of SPARQL

queries to a given service repository. Similarly, Umesh

Bellur’s [8] work semantically matches requested and

offered parameters, modeling the matchmaking

problem as one of matching bipartite graphs. Peng and

Shi [15] have replaced the match grades of Paolucci

with fine values denoted by real number, and it is used

to further rank advertisements. Wang et al.’s [16] work

proposes a semantic match algorithm based on

improved semantic distance. Bener et al. [17]

considers semantic matching of input, output,

precondition and effect.

They also provide ranking. Liu et al. [18] achieve a

fusion with five grades of matching, a collaboration of

syntactic and semantic matching, as well as

considering QoS and other dependency features. The

OWLS-MX [19] matchmaker performs hybrid

semantic matching that complements logic based

reasoning with syntactic IR based similarity metrics.

OWL-SLR [20] provides retrieval of services based

not only on subsumption relationships, but also

exploits the structural information of OWL ontologies.

According to the work of Golsa Heidary [21], in first

phase, two Web services` Input / Output parameters

are compared semantically. In second phase, services’

parameter type is compared. In third phase, the

matching rate of service is computed based on the

results of first and second phase. Zhang et al. [22]

proposed a way to precisely compute the similarity of

concepts after classifying the services into five

different matchmaking levels. The weighted semantic

distance and the common features of concepts are

considered in similarity computation. Cai et.al [23]

proposes a semantic matchmaker, which focuses only

on manufacturing domain. The similarity matching

assumes either the total number of super classes

subsuming the compared concepts or the total number

of subclasses subsumed by the compared concepts in a

shared ontological taxonomy. In addition, constraint

reasoning is performed to deal with more complex

matches.

Malaysian Journal of Science 33 (1): 68-77 (2014)

70

All the above mentioned work expects user input to be

given in the form of a service description. Less support

is provided for accepting user request in natural

language. Also the matching process is a heavy weight

task, which needs more time for performing discovery.

In order to reduce search time, Maria et al. [7]

proposed a light-weight preprocessing before the

actual discovery process. Though this approach

reduces search time considerably, many relevant

services are filtered out during the filtering process. So

our work proposes a hybrid matchmaking algorithm

which accepts user input even in natural language and

also enhances the work of Maria so that the recall rate

is improved and also the search time becomes minimal

compared to existing approaches.

EXISTING SYSTEM

A. Paolucci Algorithm

This section describes the algorithm proposed by

Paolucci. It is based on semantic matchmaking of

input and output terms of OWL-S services. It uses a

greedy approach for matchmaking. It takes an OWL-S

Query from the user as input and iterates over every

OWL-S Advertisement in the repository in order to

determine a match. An Advertisement and a Query

match if their outputs and inputs both match. The

algorithm returns a set of matching advertisements

sorted according to the degree of match.For semantic

matchmaking, an advertisement Advt and query Query

match if

 For every output parameter in Query, there is

 one output parameter in Advt. Let Queryout and

 Advtout represent the list of output concepts of

 query and advertisement respectively.

 Matching of outputs exist if

 (1)

 For every input parameter in Advt, there is one

 input parameter in Query. Let Queryin and

 Advtin represent the list of input concepts of

 query and advertisement respectively.

 Matching of inputs exist if

(2)

Suppose outQ ϵ Queryout and outA ϵ Advtout are two

concepts, in case of output matching, the match(outQ,

outA) function accepts outQ and outA as parameters

and returns the degree of match between them. Four

degrees of match are defined between them:

 Exact: If outA is an equivalent concept to outQ

 or outA is a superclass of outQ.

 Plugin: If outA Subsumes outQ.

 Subsume: If outQ Subsumes outA.

 Fail: If none of the above conditions are

satisfied.

These four degrees are ranked as: Exact > Plugin

>Subsumes > Fail.

B. Bipartite graph-based matching

Paolucci’s algorithm has drawbacks like it is

dependent on the order in which concepts are defined

in Query. Therefore, this algorithm may generate false

positive or false negative results. To solve this

problem, another approach which makes use of

bipartite graph matching is introduced. This algorithm

introduces a different set of rules for match between

concepts, in which Plugin and Subsume levels are

interchanged in their degree of match. The assumption

of Paolucci that if an advertiser advertises a concept, it

would provide all the immediate subtypes of that

concept is dropped. Hence, if the query concept is

subsumed by the advertisement concept a Subsume

match is returned and if the query concept subsumes

the advertisement concept, a Plugin match is returned.

Plugin is still ranked higher than a Subsume match.

The algorithm for matchmaking of output parameters

is given below:

Algorithm: PROCEDURE match (outA, outQ)

1: if outA = outQ then

2: return Exact

3: else if outQ superclass of outA then

4: return Plugin

5: else if outQ subsumes outA then

6: return Plugin

7: else if outA subsumes outQ then

8: return Subsumes

9: else

10: return Fail

11: end if

A. Exact Filtering

Discovering relevant service is a heavyweight task.

Performance of service discovery is significantly

reduced when the number of services increases. To

overcome this issue, a lightweight process is

introduced before discovery mechanism. This process

analyses user request in order to extract concepts.

Then the service repository is filtered based on the

concepts by generating SPARQL queries. The

architecture of the existing system is given in Fig. 1.

Malaysian Journal of Science 33 (1): 68-77 (2014)

71

Figure 1. Exact filtering before discovery

Filtering is performed by two SPARQL queries such

as Qall and Qsome. Qall returns services whose definitions

contain all the concepts referred by a user request.

Qsome returns services whose definitions contain some

(at least one) concepts referred by a user request,

assuming that those services may satisfy its

requirements and/or preferences to some extent,

despite the missing information.

Given a concrete user request defined using an

existing Semantic Web service framework, both filters

can be instantiated as SPARQL queries that select

services from a service repository, which contains

descriptions based on the same Semantic Web service

framework.

Example:

Consider a user is searching for services which

provide scholarship by government. Here, the input

terms are government, academic degree and the output

term is scholarship.

 U={(InputTermu1,{Government}),

 (InputTermu2,{Academic degree}),

 (OutputTermu3,{Scholarship)}

Now, a SPARQL query is generated to perform

filtering. The generated SPARQL query (Qsome) is as

follows.

LISTING

SAMPLE QSOME QUERY

select distinct service1

where {

service: service1

service1

profile:hasInput GOVERNMENT

UNION

service1

profile:hasInput ACADEMICDEGREE

UNION

service1

profile:hasOutput SCHOLARSHIP}

In order to reduce the search space, the above query is

applied. In exact filtering some relevant services get

discarded when filtering is done prior to discovery

process. This paves the way for the introduction of

semantic-based filtering mechanism.

PROPOSED SYSTEM

Our proposed approach finds relevant services for

user’s request based on the functional and text-based

similarity. This approach is based on the architecture

shown in Fig. 2.

Malaysian Journal of Science 33 (1): 68-77 (2014)

72

Figure 2. Proposed system architecture

In the proposed approach, we assume that there is a set

of Web services described and published in OWL-S.

In order to address one of the major limitations of

existing approaches, which expects user request to be

specified as an OWL-S query, our discovery

framework permits user query to be expressed in

natural language. Our system offers a simple graphical

user-friendly interface for service requester to input

query in natural language. It also provides facilities for

user to enter input and output parameters of the needed

service.Also, one major difficulty that arises with most

of the discovery techniques is that as search space

increases, the discovery or search time increases

proportionally. This problem can be overcome by

applying a filtering process before the actual discovery

process. A semantic-based filtering is proposed in this

work.

A. Semantic-based Filtering

It is better to search all the related words rather than

search merely for the given word. That is, finding the

meaning is much more important so that the data

mined can be more relevant to the user demand. The

meaning/related words of the given keyword are

obtained using WordNet3.0. The retrieved words are

then analyzed further to get more relevant answers.

Each word is analyzed further using the WorldNet tool

to get related words. The process is repeated for each

word found. This can help to get more relevant items

and paves way for effective discovery of relevant

services.

Figure 3. Semantic filtering before discovery

Malaysian Journal of Science 33 (1): 68-77 (2014)

73

User request is modeled as an OWL-S construct.

Similar words found are also included in the input and

output of the OWL-S construct. Based on this OWL-S

profile containing keywords as well as similar words,

the SPARQL query Qsome is formed. Fig. 3. illustrates

the process of semantic-based filtering performed

before discovery. The number of related services

discarded during filtering is reduced by this process.

Now, this filtered repository can be used during the

matchmaking process, which is explained below.

B. Bipartite with Text-based matching

The matchmaking process involves two steps namely:

performing functional similarity (using bipartite graph-

based matching) based on input and output parameters

of user request and available OWL-S services and

textual similarity (using Jaccard similarity) based on

user request in natural language and text description of

OWL-S services.

The functional similarity using bipartite graph-based

approach is computed as discussed in previous section.

The textual similarity is computed as follows. OWL-S

service provides specification description using

<profile:textDescription> tag for a web service.

Usually, a textual description of a service provides a

brief functional description of what it is. The following

NLP (Natural Language Processing) steps are carried

out for computing textual similarity:

Term Vector representation

Text description of each service is represented as a

term vector, where each component represents the

frequency of a word in the description. Using this

model, services can be represented as vectors sk =

(w1k,w2k, . . . ,wnk), where wik is a weight for term i in

the description of service sk. Terms are extracted from

the <profile:textDescription> tag of OWL-S service

description. The user query is also represented as a

term vector.

Stop word removal

Stop word removal aims to reduce words which act

poorly as index terms. For example, those words can

be “a”, “the”, “and” etc. An external stop word list is

used to filter out those words.

Stemming

Stemming is a process to replace words with their root

/ stem forms by removing suffixes or prefixes. Words

such as: intersected, intersecting, intersection is

stemmed as intersect. This process reduces not only

the variety of words, but also computational cost. The

Porter Stemming Algorithm [24] is used to conduct

stemming process.

Vector Enhancement

The modified term vectors are further enriched using

WordNet and SUMO (Suggested Upper Merged

Ontology). This process appends relevant ontology

concepts and deletes irrelevant terms from the term

vector based on the ranking of semantic relationships

among the terms.

After performing the above steps, Jaccard similarity

[25] measure is used to calculate the similarity

between Query term vector and Advertisement term

vectors. Based on this measure, the retrieved services

are sorted. The text similarity is calculated as follows:

 (3)

Finally, the proposed bipartite with text-based

matching approach computes the compound similarity

of two services, say S1 and S2 as a linear combination

of functional similarity and text-based similarity as

follows:

 (4)

To summarize, our proposed work performs a

preprocessing step (semantic filtering) before the

actual discovery process so that it can retrieve relevant

services in a limited search time by accepting user

request even in natural language. This proposed

approach is highlighted below.

Malaysian Journal of Science 33 (1): 68-77 (2014)

74

C. Proposed Bipartite with text-based matching

after performing Semantic-based Filtering

In this approach, the service request is obtained from

user and the initial service repository is filtered using

“Semantic-based Filtering” approach. Thus the search

space will be reduced considerably. Next, the

“Bipartite with Text-based” approach is used to match

the Input / Output parameters and the text descriptions

of the Query and the Advertised services. The result

will be a set of required services relevant to the user

request and also within a limited time.

IMPLEMENTATION AND EXPERIMENTAL

RESULTS

For semantic matchmaking, OWL-S services are

selected from OWLS-TC2 [26], which is a publicly

available collection of OWL-S services used to

evaluate and compare different matchmaking

algorithms. It comprises 1007 services, which uses

reference ontology with 4694 concepts from seven

different domains. Pellet reasoner [27] is used to

classify the loaded ontologies. Jena API is used for

reasoning concept relationships. The Input / Output

parameters and text-description are considered for the

matchmaking process.

For example, our algorithms were tested with a user

query for Hospiltal_Investigating_Service which has

one input and one output parameter namely Hospital

and Investigating respectively and a text description as

“Returns investigating of Hospital”

Experimental Results:

When the search time is computed for the above

algorithms, it is seen that as the search space increases,

execution time increases proportionally. This is

illustrated in Fig. 4.It is evident that this will be an

issue if the number of advertised services increases.

This problem can be overcome by applying a filtering

process before the actual discovery process.

Figure 4. Search time (Without Filtering)

When filtering is applied before the actual discovery

process, the search space is reduced considerably. The

following TABLE 1 illustrates the reduction of the

initial search space which consists of 1007 services to

just 35 and 53 services by applying the existing exact

filtering method and proposed Semantic filtering

method respectively.

Table 1. relevant services retrieved by exact and semantic filtering

Filtering technique No. of relevant services No. of retrieved relevant services

Exact filtering 55 35

Semantic filtering 55 53

Malaysian Journal of Science 33 (1): 68-77 (2014)

75

Figure 5. Performance of exact and semantic based filtering

For the experimented query there are totally 55

relevant services in the test collection. By applying

exact filtering 35 relevant services were only retrieved

and by applying the proposed semantic filtering 53

relevant services were retrieved. The results show that

the semantic filtering has considerably high recall rate

than exact filtering (Fig. 5).

This reduced search space can now be used with our

proposed “Bipartite with text-based” matching

algorithm. The efficiency of this combined “Semantic

Filtering and Bipartite with Text-based” matching in

terms of search time is illustrated in the following

TABLE 2.

Table 2. Search Time

Algorithm No. of services to be searched Search time (in sec.)

Proposed Bipartite with text-based matching

 (without filtering) 1007 43

Proposed Bipartite with text-based matching

 (with semantic filtering) 55 14

A graphical chart illustrating the performance of the proposed approach without filtering and with filtering in

terms of search time is shown in Fig. 6.

Figure 6. Performance of matchmaking algorithm in terms of Search time

Malaysian Journal of Science 33 (1): 68-77 (2014)

76

Our proposed bipartite with text-based matching with

semantic filtering approach retrieves 8 more services

compared to existing bipartite matching, out of which

3 services are related to the user request. Additional

services retrieved are: CheckHospitalAvailability,

CheckPersonnelAvailability, Select Other Hospital,

Biopsy Availability, InformHospital, ODGCService,

ODGService, PatientTransport. All the highlighted

services are related to the user request. The precision

rate of the various matchmaking algorithms are

presented in TABLE 3 and their graphical

representation is shown in Fig. 7.

Table 3. Precision rates

Method Precision

Paolucci Matching 48.6%

Bipartite Matching 80%

Proposed Bipartite with text-based similarity Matching 76%

Our proposed system provides the following

advantages: A natural language interface for ease of

use, considerable reduction in search time by applying

filtering and reasonable precision. The experimental

results show the effectiveness of our proposed

approach when compared to existing discovery

techniques

Figure 7. Precision rates of the three algorithms

CONCLUSION

In this work we have introduced a Compound

Similarity (combination of functional similarity and

their text similarities) of OWL-S annotated web

services. Functional similarity is determined using

bipartite matching of I/O parameters of services. To

measure textual similarity, we utilize Jaccard

similarity. Increased search time is a major problem in

discovery of services.

 In order to overcome this issue, the search space to be

used during the discovery process has to be reduced.

This is done by applying a semantic-based SPARQL

filter before the actual discovery process. The

proposed bipartite and text-based similarity using

semantic filtering approach retrieves most relevant

services related to user request, which can be specified

in natural language. The experimental results show the

effectiveness of our proposed approach.

Malaysian Journal of Science 33 (1): 68-77 (2014)

77

REFERENCES

1. http://uddi.org/.

2. http://www.w3.org/TR/wsdl.

3. Paolucci, M., Kawamura, T., Payne, T.R., Sycara,

K.P. (2002). Semantic Matching of Web service

Capabilities. Springer Verlag, LNCS,

International Semantic Web Conference, pp. 333

– 347.

4. Hepp M, Hoffman J, Stollberg M. (2007). A

Caching Mechanism for Semantic Web service

discovery. K. Aberer, et al. (Eds.), ISWC/ASWC,

Vol. 4825 of LNCS, Springer, pp. 480–493.

5. Kaufer F, Klusch M. (2009). WSMO-MX: A hybrid

Semantic Web service matchmaker. Web

Intelligence and Agent Systems.

6. http://en.wikipedia.org/wiki/OWL-S

7. Antonio Ruiz-Cortes, David Ruiz, Jose Maria

Garcia . (2012). Improving Semantic Web

services discovery using SPARQL-Based

Repository Filtering, Journal of Web Semantics.

8. Umesh Bellur, Roshan Kulkarni. (2007). Improved

Matchmaking Algorithm for Semantic Web

services Based on Bipartite Graph Matching.

IEEE International Conference on Web Services,

pp. 86-93.

9. G. Antoniou et al. (2003) Web Ontology Language:

OWL. Handbook on Ontologies in Information

Systems.

10. http://wordnet.princeton.edu/

11. JENA: Java Framework for Building Semantic

Web Applications. http://jena.sourceforge.net/

12. Lei Li and Ian Horrocks. (2003). A software

framework for matchmaking based on Semantic

Web technology. Proceedings of the 12th Int.

Conf. on WWW, pp. 331-339 , ACM New York

13. D. Bianchini, V. D. Antonellis, M. Melchiori, D.

Salvi. (2006). Semantic-enriched service

discovery. Proceedings of IEEE ICDE 2nd

International Workshop on Challenges in Web

Information Retrieval and Integration (WIRI06),

Atlanta, USA.

14. S. Lamparter, A. Ankolekar. (2007). Automated

selection of configurable Web services. 8.

Internationale Tagung Wirtschaftsinformatik.

Universitaetsverlag Karlsruhe, Germany.

15. H. Peng, Z. Shi, L. Chang, and W. Niu. (2008).

Improving Grade Match to Value Match for

Semantic Web service discovery. The IEEE

International Conference on Natural Computation

(ICNC), IEEE Computer Society, Jinan, China,

pp. 232 -236.

16. Gongzhen Wang, Donghong Xu, Yong Qi, Di

Hou. (2008). A Semantic Match Algorithm for

Web services based on Improved Semantic

Distance. IEEE, 4
th

 International Conference on

Next Generation Web Services Practices.

17. A. B. Bener, V. Ozadali, and E. S. llhan. (2009).

Semantic Matchmaker with Precondition and

Effect Matching Using SWRL. Expert Systems

with Applications, vol. 3 6, issue 5.

18. M. Liu, Q. Gao, W. Shen, Q. Hao, and I. Van.

(2009). A Semantic-Augmented Multi-level

Matching Model of Web services," Service

Oriented Computing and Applications, vol. 3,

issue 3, pp. 2 05-215.

19. K. Klusch M, Fries B, Sycara. (2009). OWLS-

MX: A Hybrid Semantic Web service

matchmaker for OWL-S services. Journal of Web

Semantics: Science, Services and Agents on the

WWW; 7(2), pp. 121–133.

20. Georgios Meditskos and Nick Bassiliades. (2010).

Structural and Role-Oriented Web service

discovery with Taxonomies in OWL-S. IEEE

Transaction on knowledge and data engineering,

vol. 22, no. 2, pp. 278 – 290.

21. Golsa Heidary, Kamran Zamanifar, Naser

Nematbakhsh. (2010). A Three phase Semantic

Web Matchmaker. International Journal of Smart

Home Vol. 4, No.3.

22. Yang Zhang, Fagui Liu, Nan Zhang. (2011).

Toward Fine Grained Matchmaking of Semantic

Web services based on Concept Similarity.

Journal of Information & Computational Science.

8: 2. pp. 377-384.

23. M. Cai, W. Y. Zhang, and K. Zhang. (2011).

ManuHub: A Semantic Web System for

Ontology-Based Service Management in

Distributed Manufacturing Environments, IEEE

Trans. on Systems, Man & Cybernetics-Part A:

Systems & Humans, Vol. 41, No. 3.

24. http://ccl.pku.edu.cn/doubtfire/NLP/Lexical_Anal

ysis/Word_Lemmatization/Porter/ Porter

Stemming Algorithm.htm

25. trac.research.cc.gatech.edu/ccl/export/184/Second

MindProject/SM/SM.WordNet/Paper/WordNetDo

tNet_Semantic_Similarity.pdf

26. OWL-S Service Retrieval Test Collection.

Version 2.1. http://projects.semwebcentral.org

/projects/owls-tc/.

27. E. Sirin et al. (2005). Pellet: An OWL DL

Reasoner. Journal of Web Semantics.

