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Abstract 

Biomimetic nanomaterials are catching up in the field of oncology with the traditional 

methods of treating cancer. One of the leading causes of cancer is the misregulation of 

nuclear factor-κB (NF-κB) receptors in the body. They are essential for DNA 

transcription, cytokine synthesis, and cell survival. This study includes the roles of 

different biomimetic particles in activating the NF-κB pathway leading to cancer. NF-

κB transcription factors involve various physiological processes, including innate and 

adaptive immunological responses, cell proliferation, cell death, and inflammation. It 

has been established that abnormal regulation of NF-κB and the signalling pathways 

that govern its activity play a role in cancer formation, development, and tolerance to 

chemo- and radiotherapy-future treatment options in nanotech. Cancer treatment 

includes conjugating nanoparticles and antibodies to suppress the activation of NF-κB 

receptors and using carbon-based nanomaterials like graphene. 
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1. Introduction 

The protein complex NF-κB (or NF-kappaB, which stands for "nuclear factor kappa-light-

chain-enhancer of activated B cells") regulates DNA transcription, cytokine synthesis, and cell 

survival. NF-κB is present in virtually all animal cell types and plays a role in cellular responses to 

stress, cytokines, free radicals, heavy metals, UV irradiation, oxidised LDL, and bacterial or viral 

antigens, among other things (Gilmore et al., 2006; Brasier et al., 2006; Perkins et al., 2007; 

Gilmore et al., 1999; Tian et al., 2003). The transcription factor NF-κB is involved in regulating 

the immunological response to infection. Cancer, inflammatory and autoimmune illnesses, septic 

shock, viral infection, and incorrect immunological development have all been associated with 

NF-κB misregulation. The transcription factor NF-κB has also been linked to synaptic plasticity 

and memory (Albensi et al., 2000; Meffert et al., 2003; Levenson et al., 2004; Freudenthal et al., 

1998; Merlo et al., Park et al., 2013).  

NF-κB was identified in the lab of Nobel laureate David Baltimore by Ranjan Sen through its 

interaction with an 11-base pair sequence in the immunoglobulin light-chain enhancer in B cells in 

1986 (Sen et al., 1986). It has been discovered in the dormant state in the cytoplasm of every cell 

and is found in all species, from Drosophila to man. When activated, it translocates to the nucleus, 

which controls the production of approximately 300 immunological, growth, and inflammatory 

genes. There are five members of the NF-κB family: NF-κB1 (p50/p105), NF-κB2 (p52/p100), 

RelA (p65), RelB, and c-Rel. There are two separate NF-κB activation pathways: canonical and 

non-canonical pathways. NF-κB1 and NF-κB2 are cleaved to the active p50 and p52 subunits 

before the NF-κB complex is translocated into the nucleus (Aggarwal et al., 2003). NF-κB is a 

transcription factor that regulates genes that control proliferation and survival in eukaryotic cells. 

As a result, NF-κB has been misregulated in many different types of human malignancies, 

resulting in NF-κB being constitutively active. Active NF-κB activates the production of genes 

that keep the cell growing and protect it from apoptosis-inducing circumstances. Proteins that 

govern NF-κB signalling are altered or overexpressed in cancer, resulting in a lack of cooperation 

between the malignant cell and the rest of the body. This is evident in metastasis and the immune 

system's ineffective tumour eradication (Vlahopoulos et al., 2017). Normal cells die when they are 

expelled from the tissue they belong to or when their genome fails to work in concert with tissue 

function: these events depend on NF-κB feedback regulation and fail in cancer (Vlahopoulos et al., 

2015). 

Defects in NF-κB make cells more susceptible to apoptosis, which leads to cell death. This is 

because NF-κB inhibits the activity of the caspase family of enzymes, which are essential for most 
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apoptotic processes, by regulating anti-apoptotic genes such as TRAF1 and TRAF2 (Sheikh et al., 

2003). NF-κB activity is increased in tumour cells, as seen in 41% of nasopharyngeal carcinoma 

(Li et al., 2017), colorectal cancer, prostate cancer, and pancreatic tumours. This is caused by 

mutations in genes that code for NF-κB transcription factors or genes that control NF-κB activity 

(such as IκB genes); in addition, some tumour cells release substances that activate NF-κB (Sun et 

al., 2011; Nouri et al., 2020). By inhibiting NF-κB, tumour cells can cease multiplying, perish, or 

become more susceptible to anti-tumour drugs (Taniguchi et al., 2018; Sun et al., 2013). As a 

result, pharmaceutical companies are actively researching NF-κB as a target for anti-cancer 

therapy (Escárcega et al., 2007). Nonetheless, although convincing experimental data has 

identified NF-κB as a critical promoter of tumorigenesis, providing a solid rationale for the 

development of antitumor therapy based on NF-κB activity suppression, caution should be 

exercised when considering anti-NF-κB activity as a broad therapeutic strategy in cancer 

treatment, as data has also shown that NF-κB activity enhances tumour cell sensitivity to apoptosis 

and senescence. Furthermore, the canonical NF-κB is a Fas transcription activator, whereas the 

alternative NF-κB is a Fas transcription repressor. As a result, NF-κB enhances Fas-mediated 

apoptosis in cancer cells, while inhibiting NF-κB may limit Fas-mediated apoptosis, impairing 

tumour suppression by host immune cells (Liu et al., 2012). 

The transcription factor NF-κB was first discovered to be required for B cell-specific gene 

expression. Still, subsequent research has found that it is part of a widely expressed family of Rel-

related transcription factors that act as critical regulators for the inducible expression of several 

genes. The number of stimuli that trigger members of the Rel family is expanding, emphasising 

their importance in transcriptional responses. The molecular mechanism by which various inputs 

interact to activate this group of transcription factors is still a mystery (Mercurio et al., 1999).  

 

2. Types of NF-κB receptors activated in cancer 

As discussed earlier, five transcription factors make up the NF-κB family (also known as 

theRel/NF-κB family): p50, p52, RelA (also known as p65), RelB, and c-Rel (Karin et al., 2002; 

Bonizzi et al., 2004). All of them have a Rel homology domain (RHD), which contains a nuclear 

localisation signal (NLS) and is involved in homomeric or heteromeric dimer formation, 

sequence-specific DNA binding, and interaction with ankyrin repeat motifs found in IκB family 

members, which inhibits NF-κB. IκBα, IκBβ, IκBγ, IκBε, IκBNS, and Bcl-3 are the seven 

members of the IκB family. IκBζ (Yamamoto et al., 2004), IκBNS (Kuwata et al., 2006) and Bcl-3 

(Bours et al., 1994) are nuclear proteins that interact with NF-κB family members in the nucleus to 
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control transcription. The remaining members of the IκB family engage with NF-κB’ sRel 

homology domain in the cytoplasm and hide the nuclear localisation signal, thus sequestering NF-

κB family members in the cytoplasm. As a result, when NF-κB family members form complexes 

with cytoplasmic IκB family proteins, they become transcriptionally inactive. 

The activation of NF-κB in at least two types of cells is required for the formation and 

progression of cancer. NF-κB activation occurs in cells that are destined to become malignant 

(premalignant cells) and cells that are recruited to the tumour microenvironment and produce 

cytokines, growth and angiogenic factors, and proteases that deteriorate the extracellular matrix to 

assist cancer development and progression (microenvironment cells) (Greten et al., 2004; Pikarsky 

et al., 2004). Macrophages, dendritic cells, neutrophils, mast cells, T cells, and B cells are among 

the microenvironment cells. Several inflammatory cytokines, including TNFα, IL-1, and IL-6, are 

known to be dependent on the IKK-mediated classical NF-κB activation pathway generated by 

inflammation in some of these cells. TNFα and IL-1 secreted by premalignant cells activate NF-

κB, which causes the activation of genes associated with apoptosis blocking, proliferation, and 

angiogenesis, all of which encourage malignancy. The conventional activation pathway, in which 

TNFR recruits TRAF2 and TRAF5 (Tada et al., 2001), and TRAF6 is required for IL-1 signalling, 

is also involved in NF-κB activation by TNFα or IL-1(Kobayashi et al., 2001; Cao et al., 1996). 

Cancer metastasis necessitates malignant cells migrating both into and out of vessel walls that 

convey them to different body parts. Specific chemicals expressed in response to various signals 

from inflammatory cells, tumour cells, and others allow cells to pass vessel walls. ICAM-1, 

ELAM-1, and VCAM-1 are three of the unique molecules that have been demonstrated to be 

controlled by NF-κB activation (van der Saag et al., 1996; Iademarco et al., 1992; Whelan et al., 

1991). As a primary target of NF-κB, the gene encoding granulocyte macrophage-colony 

stimulating factor (GM-CSF) facilitates breast cancer osteolytic bone metastases by increasing 

osteoclast formation (Park et al., 2007).  

Like normal cells, tumour cells require oxygen to function, and a lack of oxygen can slow 

tumour progression. The production of angiogenic growth factors (e.g., VEGF, MCP-1) from 

tumour cells and inflammatory cells like macrophages and neutrophils, or in response to pro-

inflammatory cytokines, is required for tumour vascularisation (e.g., TNF) (Loch et al., 2001; 

Oyama et al., 2000; Ueno et al., 2000). NF-κB controls the expression of angiogenesis-related 

growth factors and cytokines (VEGF, TNF, and MCP-1) (Chiloy et al., 1997; Shakhov et al., 

1990; Ueda et al., 1994; Collart et al., 1994). Many genes associated with cancer promotion (e.g., 

clonal expansion, growth, diversification, angiogenesis, adhesion, extravasation, and extracellular 
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matrix breakdown) are regulated by NF-κB. For example, the proinflammatory gene COX2, which 

is highly expressed in a range of malignancies, including colorectal cancer and mesothelioma 

(Kalgutkar et al., 2001; Marrogi et al., 2000), may be regulated by NF-κB. TNF (Noguchi et al., 

1996), IL-1 (Tomimatsu et al., 2001), iNOS (Klotz et al., 1999), matrix metalloproteinase (MMP-

9) (Dong et al., 2001), urokinase-type plasminogen activator (uPA) (Pacheco et al., 2001), and 

many other chemokines have all been found to be regulated by NF-κB in similar research(Scotton 

et al., 2001; Strieter et al., 2001; Palmer et al., 2001).  

In addition to its more well-known anti-apoptotic function, NF-κB has been found to have a 

pro-apoptotic function. B cells (Abbadie et al., 1993), T cells (Dumont et al., 1999; Kasibhatla et 

al., 1998), neuronal cells (Schneider et al., 1999; Qin et al., 1999), and endothelial cells 

(DeMeester et al., 1998) are examples of cells that have pro-apoptotic effects from it. The 

conflicting effects of NF-κB are assumed to be cell-type specific and reliant on the inducing signal 

(IL-1, TNF-α, and UV radiation, for example). Different NF-κB activation pathways may result in 

the expression of apoptosis-promoting (e.g., Fas, c-myc, p53, and IκBα) or apoptosis-inhibiting 

proteins (e.g., Fas, c-myc, p53, and IκBα) or apoptosis-inhibiting proteins (e.g., TRAF2, IAP 

proteins, and Bcl-2 like proteins) (Qin et al., 1999; Chan et al., 1999; Stehlik et al., 1998). 

Furthermore, NF-κB activation regulates cell cycle proteins (e.g., cyclin D1 and CDK2 kinase) 

(Guttridge et al., 1999; Hinz et al., 1999; Bash et al., 1997) and their interactions with cellular 

components (e.g., p300 and p53) that promote or induce apoptosis in different ways (Ravi et al., 

1998; Yang et al., 1999).  

The five types of NF-κB receptors are as follows: 

 

1. RelA/p65: Transcription factor p65, also known as nuclear factor NF-κB p65 subunit, is a 

protein encoded by the RELA gene in humans (Nolan et al., 1991). NF-κB/RELA 

activation has been linked to cancer development (Vlahopoulos et al., 2019), implying that 

RELA might be a cancer biomarker (Onishi et al., 2018). Various cancer types have also 

reported RELA-specific alteration patterns (Ahmed et al., 2019; Ali et al., 2017). The 

correlation discovered between RELA nuclear localisation and prostate cancer 

aggressiveness, and biochemical recurrence suggests that RELA may have a potential role 

as a biomarker for prostate cancer development and metastasis (Gannon et al., 2013). 

There is a strong association between RELA nuclear localisation and clinicopathological 

characteristics for papillary thyroid cancer (PTC), suggesting that NF-κB activation plays a 

role in tumour development and aggressiveness in PTC (Pyo et al., 2013). In addition to 
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being used as a biomarker, morphoproteomic study shows that serine 536 phosphorylation 

in RELA is associated with nuclear translocation and the expression of several 

transactivating genes such as COX-2, IL-8, and GST-pi in follicular thyroid carcinomas 

(Liu et al., 2012). Mutations in RELA's transactivation domain can reduce transactivation 

capacity, which has been discovered in lymphoid neoplasia (Trecca et al., 1997). In 

patients with head and neck squamous cell carcinoma, nuclear NF-B/RELA localisation 

favourably connects tumour micrometastases into lymph and blood and negatively 

correlates with patient survival results (Balermpas et al., 2013). This points to NF-B/RELA 

as a potential target for targeted treatment. RELA and the aryl hydrocarbon receptor (AhR) 

have a physical and functional interaction, activating c-myc gene transcription in breast 

cancer cells (Gionet et al., 2009). Another study found connections between oestrogen 

receptors (ER) and NF-κB members such as p50 and RELA. It has been demonstrated that 

ERα interacts with both p50 and RELA in vitro and in vivo and that RELA antibodies can 

inhibit the formation of ER: ERE complexes. According to the article, ER and NF-κB 

suppress each other. 

2. c-Rel: In various contexts, abnormal, constitutively active Rel/NF-κB activity has been 

linked to human malignancies (Gilmore et al., 2002; Karin et al., 2002). Although p50–

RelA NF-κB complexes are constitutively nuclear and active in many human tumour cell 

types (Gilmore et al., 2002), this activity most likely contributes to tumour cell survival 

(i.e., antiapoptosis) (Barkett and Gilmore et al., 1999). Thus, suppressing NF-κB activity 

will likely be helpful as adjuvant treatment in these conditions, sensitising tumour cells to 

the apoptotic impact of typical chemo- or radiotherapeutic drugs. Similarly, although C-

terminal truncation of p100 (in the NF-κB2 gene) and overexpression of the p50/p52 

coactivator BCL-3 have been found in human B-cell leukaemias/lymphomas (Gilmore et 

al., 2002; Karin et al., 2002), these proteins have not been shown to have oncogenic 

activity in lymphoid cells in vitro or transgenic mice. cRel, conversely, appears to have 

direct and total carcinogenic activity in lymphoid cells, according to many lines of 

evidence. First, as previously mentioned, human REL overexpression (but not other human 

Rel/NF-kB family members) can malignantly convert chicken lymphoid cells in vitro 

(Gilmore et al., 2001; Starczynowski et al., 2003). Second, transgenic mice with v-rel 

expression driven by a T cell-specific promoter generate T-cell malignancies, although 

with a 6–10-month latency (Carrasco et al., 1996). Third, c-rel gene expression has been 

upregulated in B-cell lymphomas through genetic mechanisms: one chicken B-cell 
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lymphoma cell line has a retroviral integration upstream of c-rel (Kabrun et al., 1990); the 

REL gene has been translocated near the immunoglobulin light chain gene enhancer in one 

primary Hodgkin's lymphoma (Barth et al., 2001); and the REL gene is enhanced in human 

lymphomas. 

3. RelB: RelB was discovered as a major transcription factor of NF-κB, which affects several 

biological processes, including cell survival and immunological and inflammatory 

responses (Guo et al., 2008; Bellet et al., 2012; McMillian et al., 2011). Emerging research 

suggests that relB has a significant function in the advancement of several forms of cancer. 

RelB stimulates cancer cell proliferation in prostate cancer while decreasing 

radiosensitivity (Xu et al., 2009; Zhu et al., 2014). In breast cancer, relB promotes cellular 

survival and has a propensity for more invasive phenotypes (Mineva et al., 2009). 

Overexpression of relB in chronic lymphocytic leukaemia (CLL) cells improves 

susceptibility to the proteasome inhibitor bortezomib (Xu et al., 2014). 

4. NF-κB1: Although NF-κB1 is most typically associated with cancers associated with 

inflammation (Didonato et al., 2012), anti-inflammatory p50 homodimers can operate as 

tumour suppressors in hepatocellular carcinoma (Wilson et al., 2015). NF-κB1 may impart 

a direct cellular protective response against carcinogens that induce genotoxic damage, 

such as alkylating chemicals, and its involvement in controlling the inflammatory 

response. NF-κB1 has been identified as a pathway-specific tumour suppressor that 

protects against haematological malignancy after alkylator (N-methyl-Nnitrosourea)-

mediated cellular damage (Voce et al., 2014). In colorectal cancer cell lines, p50 

homodimers have also been shown to attract the anti-apoptotic protein BCL2-associated 

athanogene (BAG-1) to the promoter of the epidermal growth factor receptor (EGFR) 

gene. BAG-1 needs p50 to suppress EGFR expression, potentially downregulating an 

essential signalling pathway in colorectal cancer start and development (Southern et al., 

2012). 

5. NF-κB2/p52: Despite its discovery more than a decade ago, p52 NF-κB (also known as 

NF-κB2 and Lyt-10) is one of the most poorly understood NF-κB subunits (Neri et al., 

1991; Schmid et al., 1991; Bours et al., 1992). p52 is a tumour-promoting transcription 

factor that is activated by viral oncoprotein production. Increased p52 activation has been 

seen in the lung (Dimitrakopoulos et al., 2012), breast (Cogswell et al., 2000), prostate 

(Lessard et al., 2005; Seo et al., 2009) and pancreatic cancers (Wharry et al., 2009); 

however, research on the impact of p52 activation in epithelial cancers has been limited 
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due to a lack of adequate in vivo models. 

 

Table 1: Types of NF-κB receptors 

Type Cancer Association Biomarkers Pathways Interactions 

RelA/p65 

Promotes cancer 

development and 

metastasis 

Prostate cancer, 

papillary thyroid 

cancer 

RelA nuclear 

translocation, serine 

536 phosphorylation 

Aryl hydrocarbon 

receptor (AhR), 

estrogen receptors 

(ER) 

c-Rel 

Directly contributes 

to lymphoid 

malignancies 

Not Established Not Established Not Established 

RelB 

Promotes cancer 

cell proliferation 

and survival 

Chronic 

lymphocytic 

leukaemia (CLL) 

Not Established Not Established 

NF-κB1 

Can act as a tumor 

suppressor in some 

cancers 

Hepatocellular 

carcinoma 

p50 homodimer 

formation 

BCL2-associated 

athanogene (BAG-

1) 

NF-

κB2/p52 

Promotes 

tumorigenesis 

Lung, breast, 

prostate, 

pancreatic cancers 

Not well understood Viral oncoproteins 

 

3. Role of different biomimeric nanoparticles in activation of NF-κB receptors 

 

Nanoparticles-Antibody Conjugate: 

The bulk of NF-κB is found in the cytosol as a heterodimer of p65/p50 Rel proteins bound to 

inhibitory IκBα proteins. When the IκBα protein is activated, it separates from NF-κB, and 

p65/p50 translocates into the nucleus to begin gene expression (Kabe et al., 2005; Karin et al., 

2002). Because of misregulated signals, several forms of human malignancies have constitutively 

active NF-κB (Ahn et al., 2005; Pikarsky et al., 2004; Karin et al., 2005). The epithelial 

malignancies of breast, colon, lung, prostate, and ovarian carcinomas have all been linked to NF-

κB signalling (Zeligs et al., 2016). As a result, inhibiting NF-κB activity and its signalling 

pathways could provide promising novel cancer chemotherapeutic methods. As a targeted therapy, 
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blocking NF-κB can induce tumour cells to stop multiplying or become more receptive to anti-

tumor medicines (Greten et al., 2004).  

Understanding the control and function of the NF-κB subunits in cancer is paving the way for 

developing more effective treatments targeting the NF-κB–IKK pathway (Ahn et al., 2005). 

Inhibition of NF-κB as a therapeutic target is generally inefficient due to inhibitors with low 

specificity to a target protein or disruption from other signalling systems in the parallel crosstalk. 

To prevent off-target effects, siRNA-mediated gene silencing has been created. Despite this, the 

use of siRNA as a treatment is limited due to their poor chemical stability and the requirement of 

easily transfectable cells (Kim et al., 2019; Kokkinos et al., 2020). A p65-antibody-nanoparticle 

construct is used to inhibit the translocation of the particular transcription factor Rel protein 

p65/p50 near the nuclear pore in the last cytosol phase, which is akin to catching a goal-tending 

ball in a soccer game (Chen et al., 2020).  

In previously described antibody-based nanotechnology, cellular surface antibodies such as 

human epidermal growth factor receptor 2 (HER2) are coupled onto nanoparticles to block or 

target surface antigens via immunogenic recognition for detection/diagnosis, imaging, and 

treatment (Yang et al., 2010; McCarron et al., 2008). There have been no reports of an antibody 

treatment for preventing the nuclear transduction process in the cytoplasm because antibodies have 

substantial permeability issues entering cells unless they are coupled with cargo delivery or cell-

penetrating peptides (CPP) (Rizzuti et al., 2015). The difficulty is solved by conjugating the p65 

antibody to CPP-conjugated nanoparticles. The CPP-nanoparticle design will be an excellent 

nanocarrier for delivering the p65 antibody into the cell and focusing on the nucleus to capture the 

Rel protein p65. Mesoporous silica nanoparticle (MSN) (Chen et al., 2013; Chen et al., 2019; Shao 

et al., 2018; Sun et al., 2019) is chosen for the nanocarrier because of its ease of functionalisation.  

In vitro, cell-penetrating peptides such as the transactivator of transcription (TAT) peptide 

comprising a short section of YGRKKRRQRRR have been studied for their ability to promote cell 

penetration and nucleus targeting (Rizzuti et al., 2015; Wu et al., 2013). TAT peptides coupled 

with nanoparticles have been proven to direct nuclear entry into cells. TAT-functionalized tiny 

MSN has been employed to transport cancer drugs into the nucleus of cells for successful cancer 

treatment. Using TAT's inherent proclivity for nucleus targeting and p65 antibody's ability to 

capture p65 in the perinuclear area, we show that this hybrid MSN can successfully block TNF-

induced NF-κB p65 activity in HeLa cells and decrease cell proliferation in constitutively NF-κB 

activated HNSCC cells (Pan et al., 2012, 2013, 2014). 
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Carbon-Based Nanomaterials: 

Carbon nanotubes (CNTs) have been widely studied for their unique physicochemical features 

thus far. Because of their 1D nature, they are an excellent substrate for biological applications 

(Battigelli et al., 2013). VanHandel et al. discovered that tumour-associated CNTs took up most 

Macrophages in one of the first trials employing CNTs to treat glioma, with no substantial 

systemic damage in animals (VanHandel et al., 2009). Furthermore, in a study using a metastatic 

brain tumour mouse model, functionalised carbon nanotubes conjugated with CpG via disulfide 

bonds not only increased CpG uptake by TAMs but also resulted in the elimination of intracranial 

(i.c.) gliomas, protecting mice from tumour recurrence even at low doses. Furthermore, higher 

retention of CNT–CpG was detected in TLR-9 positive microglia, leading to TLR (Toll-Like 

Receptor)-induced activation of NF-κB and AP-1 (Fan et al., 2012).  

Graphene is the most recent member of the family of carbon nanomaterials. Because of its 

physiochemical features and biocompatibility, this carbon allotrope lattice has received much 

interest in cancer therapy. Graphene strongly stimulates the TLR-mediated NF-κB pathway and 

increases the production of cytokines such as IL-1a, TNF-α, and IL-10, as well as chemokines 

such as MCP-1, MIP-1a, and RANTES. These inflammatory stimuli alter the shape and function 

of naïve macrophages. IL-10 prevents macrophages from developing inflammatory responses, 

hence preventing macrophages from overactivation following graphene exposure (Zhou et al., 

2012). Tao et al. employed PEG and PEI-functionalized Graphene (GO-PEG-PEI) to transport 

CpG. On the one hand, GO-PEG-PEI increased the number of proinflammatory cytokines and 

improved the function of CpG. On the other hand, GO-PEG-PEI boosted the immunostimulatory 

activity of CpG due to its NIR absorbance (Tao et al. 2014). Ma et al. discovered that bigger 

Graphene particles (750–1300 nm) promoted M1 polarisation more potently than smaller 

Graphene particles (50–350 nm); in contrast to more minor Graphene moieties, larger Graphene 

particles may adsorb onto the macrophage membrane and engage vigorously with Toll-like 

receptors such as TLR2 and TLR4. As a result, bigger Graphene particles more strongly activated 

the NF-κB pathway and significantly increased M1 polarisation in vitro and in vivo (Ma et al., 

2015). 
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Table 2: Nanoparticles & their effects on NF-κB pathways 

Nanoparticle 

Type 
Function 

Effect on NF-κB 

Signaling 
Mechanism of Action Reference 

Antibody-

Nanoparticle 

Conjugate 

Inhibit p65/p50 

translocation to 

nucleus 

Blocks NF-κB 

activation 

TAT peptide conjugated 

nanoparticles deliver p65 

antibody to the 

cytoplasm to capture Rel 

protein p65 

Chen et 

al., 2020 

Mesoporous 

Silica 

Nanoparticle 

(MSN) 

Carrier for p65 

antibody 

Facilitates delivery and 

targeting of p65 

antibody 

Chosen for ease of 

functionalization 

Chen et 

al., 2013 

Carbon 

Nanotubes 

(CNTs) 

Immunostimulant 

May activate NF-κB 

through TLR-9 

positive microglia 

Increased CpG uptake by 

TAMs leads to TLR-

induced activation 

Fan et al., 

2012 

Graphene 

Oxide (GO) 
Immunostimulant 

Promotes TLR-

mediated NF-κB 

pathway activation 

Increases 

proinflammatory 

cytokines and chemokine 

production 

Zhou et 

al., 2012 

PEGylated 

and PEI-

functionalized 

Graphene 

(GO-PEG-

PEI) 

CpG delivery and 

immunostimulant 

Enhances CpG 

function and 

immunostimulatory 

activity 

Delivers CpG and 

increases NIR 

absorbance 

Tao et al., 

2014 

 

4. Future Perspectives & Conclusion 

Materials having immunomodulatory properties are being developed for cancer vaccines, 

cytokine delivery, and TAM regulation. As the use of biomaterials in cancer immunotherapies 

grows, more emphasis will be placed on directly regulating other kinds of immune cells. The 

intersection of nanomedicine and imaging will likely represent a potential step forward in 

developing cancer immuno-nanomedicines shortly. The fundamental criteria needing 

improvement to achieve maximum clinical efficacy are patients' particular responses, cancer type 

specificity, and robust targeting. High-throughput library methods, as well as extensive 

phenotyping, will be critical in the creation of cutting-edge products with the ability to target 

cancer cells mainly.  

Because the behaviour of nanoparticles may differ in vitro and in vivo, substantial validation in 

animal models is required for reliable clinical translation. To improve anticancer effects, it will be 

necessary to stimulate both the innate and adaptive immune systems with carefully developed 

cancer immuno-nanomedicines. To achieve precision administration, better stability, targeted 
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biodistribution, favourable pharmacokinetics, and minimal systemic toxicity, nanoparticle features 

such as size, shape, charge, material, surface functionalisation, and antigen and adjuvant selection 

will require rigorous critical examination (Ovais et al., 2019).  

Newer and more complex characterisation approaches, such as pharmacokinetics and long-term 

toxicity investigations, are also required. The expense of integrating numerous components for co-

loading or multifunctional features is another factor to consider for economic feasibility. The 

requisite regulatory processes are also becoming more difficult due to the multifunctionalities of 

the nanoparticles, which comprise many extra components and claim various indications with a 

single nanoparticle. Nonetheless, there is a good chance that multifunctional chemo/gene therapy 

nanoparticle systems for cancer-specific treatment will be deployed in clinics soon. 

Multifunctional chemo/gene therapy techniques will aid in meeting unmet medical demands for 

effective cancer therapies with few side effects (Glasglow et al., 2015). 
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