Main Article Content

Faridah Lisa Supian
Yeong Yi Wong
Nur Farah Nadia Abd Karim
Afiq Radzwan
Darvina Choo Kheng Lim
Abdullah Faisal Al Naim


This study examined the behaviors of Langmuir-Blodgett ultrathin calixarene films at the air-water interface. The Langmuir trough was used to estimate the surface pressure, surface potential, and effective dipole moment of two calixarenes, namely, calix[4]arene (THC4) and calix[8]arene (THC8). The band gap was determined using the density functional theory (DFT). The DFT simulation gave a band gap of 2.28 eV for THC4, confirming that THC4 was an insulator. The surface pressure isotherms of THC4 and THC8 yielded the expected molecular behavior from the gaseous to the solid phases. THC4 and THC8 showed a perpendicular and a parallel orientation in the air-water subphase, respectively. The ∆Vmax values of TCH4 and THC 8 were 205 mV and 141mV, respectively, and their µ﬩max values were 0.147 D and 0.088 D, respectively.


Download data is not yet available.

Article Details

How to Cite
Supian, F. L., Wong, Y. Y., Abd Karim, N. F. N. ., Radzwan, A., Lim, D. C. K. ., & Al Naim, A. F. . (2022). THE MOLECULAR BEHAVIORS OF CALIXARENES AT THE AIR-WATER INTERFACE: DENSITY FUNCTIONAL THEORY, SURFACE PRESSURE, POTENTIAL, AND EFFECTIVE DIPOLE MOMENT. Malaysian Journal of Science, 41(3), 63–68.
Original Articles


Al-Rubaye, S., Rajagopalan, R., Dou, S. X. & Cheng, Z. (2017). Facile synthesis of a reduced graphene oxide wrapped porous NiCo 2 O 4 composite with superior performance as an electrode material for supercapacitors. Journal of Materials Chemistry A, 5(36), 18989-18997.

Azahari, N. A., Supian, F. L. & Malik, S. A. (2012). Interaction Between Langmuir Films Of Calix [4] Arenes With Aqueous Lead Ions.

Dal Corso, A. (2014). Pseudopotentials periodic table: From H to Pu. Computational Materials Science, 95, 337-350.

Dhanabalan, A., Gaffo, L., Barros, A. M., Moreira, W. C. & Oliveira, O. N. (1999). Surface pressure and surface potential isotherms of ytterbium bisphthalocyanine Langmuir monolayers. Langmuir, 15(11), 3944-3949.

Echabaane, M., Rouis, A., Bonnamour, I. & Ouada, H. B. (2013). Optical, electrical and sensing properties of β-ketoimine calix [4] arene thin films. Materials Chemistry and Physics, 141(2-3), 781-789.

Edwards, N. Y., Schnable, D. M., Gearba-Dolocan, I. R. & Strubhar, J. L. (2021). Terpyridine-Functionalized Calixarenes: Synthesis, Characterization and Anion Sensing Applications. Molecules, 26(1), 87.

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., ... & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502.

Gillespie, P. N. & Martsinovich, N. (2019). Origin of charge trapping in TiO2/reduced graphene oxide photocatalytic composites: Insights from theory. ACS applied materials & interfaces, 11(35), 31909-31922.

Hu, R. & Shang, J. (2019). Quantum capacitance of transition metal and nitrogen co-doped graphenes as supercapacitors electrodes: A DFT study. Applied Surface Science, 496, 143659.

Jin, K. H., Yeom, H. W. & Liu, F. (2020). Doping-induced topological phase transition in Bi: The role of quantum electronic stress. Physical Review B, 101(3), 035111.

Karmakar, A., Karthick, K., Sankar, S. S., Kumaravel, S., Madhu, R. & Kundu, S. (2021). A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review. Journal of Materials Chemistry A, 9(3), 1314-1352.

Khazaei, M., Ranjbar, A., Arai, M. & Yunoki, S. (2016). Topological insulators in the ordered double transition metals M 2′ M ″C 2 MXenes (M′= Mo, W; M ″= Ti, Zr, Hf). Physical Review B, 94(12), 125152.

Kumar, A., Balasubramaniam, K. R., Kangsabanik, J. & Alam, A. (2016). Crystal structure, stability, and optoelectronic properties of the organic-inorganic wide-band-gap perovskite CH 3 NH 3 BaI 3: candidate for transparent conductor applications. Physical Review B, 94(18), 180105.

Kumar, R., Sharma, A., Singh, H., Suating, P., Kim, H. S., Sunwoo, K., ... & Kim, J. S. (2019). Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chemical reviews, 119(16), 9657-9721.

Lawal, A., Shaari, A., Ahmed, R. & Jarkoni, N. (2017). First-principles investigations of electron-hole inclusion effects on optoelectronic properties of Bi2Te3, a topological insulator for broadband photodetector. Physica B: Condensed Matter, 520, 69-75.

Leontie, L., Danac, R., Carlescu, A., Doroftei, C., Rusu, G. G., Tiron, V., ... & Susu, O. (2018). Electric and optical properties of some new functional lower-rim-substituted calixarene derivatives in thin films. Applied Physics A, 124(5), 1-12.

Liao, Y., Peng, R., Peng, S., Zeng, W. & Zhou, Q. (2021). The adsorption of H2 and C2H2 on Ge-doped and Cr-doped graphene structures: A DFT study. Nanomaterials, 11(1), 231.

Lim, D. C., Supian, F. L. & Hamzah, Y. (2020). Langmuir, Raman, and electrical properties comparison of calixarene and calixarene-rGO using Langmuir Blodgett (LB) technique. Journal of Materials Science: Materials in Electronics, 31(21), 18487-18494.

Loa, I., Popuri, S. R., Fortes, A. D. & Bos, J. W. G. (2018). Critical mode and band-gap-controlled bipolar thermoelectric properties of SnSe. Physical Review Materials, 2(8), 085405.

Morales-García, Á., Valero, R. & Illas, F. (2017). An empirical, yet practical way to predict the band gap in solids by using density functional band structure calculations. The Journal of Physical Chemistry C, 121(34), 18862-18866.

Ortolan, A. O., Øestrøm, I., Caramori, G. F., Parreira, R. L., Munoz-Castro, A. & Bickelhaupt, F. M. (2018). Anion recognition by organometallic calixarenes: analysis from relativistic DFT calculations. Organometallics, 37(13), 2167-2176.

Radzwan, A., Lawal, A., Shaari, A., Chiromawa, I. M., Ahams, S. T. & Ahmed, R. (2020). First-principles calculations of structural, electronic, and optical properties for Ni-doped Sb2S3. Computational Condensed Matter, 24, e00477.

Sanabria Español, E. & Maldonado, M. (2019). Host–guest recognition of pesticides by calixarenes. Critical reviews in analytical chemistry, 49(5), 383-394.

Shah, A. (2020). A novel electrochemical nanosensor for the simultaneous sensing of two toxic food dyes. ACS omega, 5(11), 6187-6193.

Sharma, V. S., Sharma, A. S., Worthington, S. J., Shah, P. A. & Shrivastav, P. S. (2020). Columnar self-assembly, electrochemical and luminescence properties of basket-shaped liquid crystalline derivatives of Schiff-base-moulded p-tert-butyl-calix [4] arene. New Journal of Chemistry, 44(47), 20610-20619.

Shen, J., Chen, Z., Zheng, L., Li, W. & Pei, Y. (2016). Single parabolic band behavior of thermoelectric p-type CuGaTe 2. Journal of Materials Chemistry C, 4(1), 209-214.

Shinkai, S. (1993). Calixarenes-the third generation of supramolecules. Tetrahedron, 49(40), 8933-8968.

Supian, F.L. (2010). Sensing interactions within nanoscale calixarene and polysiloxane Langmuir-Blodgett films (Doctoral dissertation, The University of Sheffield).

Wang, X., Yu, Y., Wang, Z., Zheng, J., Bi, Y. & Zheng, Z. (2020). Thiacalix [4] arene-Protected Titanium–Oxo Clusters: Influence of Ligand Conformation and Ti–S Coordination on the Visible-Light Photocatalytic Hydrogen Production. Inorganic chemistry, 59(10), 7150-7157.

Woods-Robinson, R., Han, Y., Zhang, H., Ablekim, T., Khan, I., Persson, K. A. & Zakutayev, A. (2020). Wide band gap chalcogenide semiconductors. Chemical reviews, 120(9), 4007-4055.

Wu, B., Zhang, L., Jiang, B., Li, Q., Tian, C., Xie, Y., ... & Fu, H. (2021). Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation. Angewandte Chemie International Edition, 60(9), 4815-4822.

Wu, W., Gong, S. & Sun, Q. (2020). Electronic band structure phase diagram of 3D carbon allotropes from machine learning. Diamond and Related Materials, 108, 107990.

Yazyev, O. V., Moore, J. E. & Louie, S. G. (2010). Spin polarization and transport of surface states in the topological insulators Bi 2 Se 3 and Bi 2 Te 3 from first principles. Physical review letters, 105(26), 266806.