Main Article Content

Nuntaporn Moonrungsee
Jaroon Jakmunee
Apaporn Boonmee
Juthaporn Kaewloy
Waranya Wongkasem
Nipat Peamaroon


The simple 3D toolbox is constructed and used with a smartphone for detecting the stoichiometric equivalent of chemical reactions. The reaction between salicylic acid and iron(III) ion to form a purple complex is chosen. The captured image of the purple product is measured for RGB color intensities. The color intensities of the solutions depends on concentration of the colored product, and the constant color intensities were observed after the reaction reached its stoichiometry. Several smartphones have been tested for capturing the images and measuring the color intensities. It revealed that all smartphones can be used but the white balance mode is required tuning up to get clear enough picture for color intensity measurement. This smartphone spectrometer provides a comparable results to those obtained from a commercial ultraviolet-visible spectrometer. This work can be a guideline for creation of portable devices in chemical analysis using a smartphone. Moreover, the developed device and method can be practically repeated in chemistry laboratory class for teaching stoichiometry and chemical reaction using a smartphone.


Download data is not yet available.

Article Details

How to Cite
Nuntaporn Moonrungsee, Jaroon Jakmunee, Apaporn Boonmee, Juthaporn Kaewloy, Waranya Wongkasem, & Peamaroon, N. (2023). A SIMPLE 3D TOOLBOX-BASED SMARTPHONE COLORIMETER: THE ABILITY TO DETECT THE STOICHIOMETRIC EQUIVALENT OF A CHEMICAL REACTION. Malaysian Journal of Science, 42(3), 27–33. https://doi.org/10.22452/mjs.vol42no3.5
Original Articles


Crocombe R.A. (2018). Portable spectroscopy. Applied Spectroscopy 72: 1701-1751. https://doi.org/10.1177/0003702818809719

Jackson K.R., Layne T., Dent D.A., Tsuei A., Li J., Haverstick D.M. & Landers J.P. (2020). A novel loop-mediated isothermal amplification method for identification of four body fluids with smartphone detection. Forensic Science International: Genetics 45: 102195. https://doi.org/10.1016/j.fsigen.2019.102195

Jin R., Wang F., Li G., Yan X., Liu M., Chen Y., Zhou W., Gao H., Sun P. & Lu G. (2021). Construction of multienzyme-hydrogel sensor with smartphone detector for on-site monitoring of organophosphorus pesticide. Sensor and Actuator B: Chemical 327: 128922. https://doi.org/10.1016/j.snb.2020.128922

Kajornklin P., Jarujamrus P., Phanphon P., Ngernpradab P., Supasorn S., Chairam S. & Amatatongchai M. (2020). Fabricating a low-cost, simple, screen printed paper towel-based experimental device to demonstrate the factors affecting chemical equilibrium and chemical equilibrium constant, Kc. Journal of Chemical Education 97: 1984-1991. https://doi.org/10.1021/acs.jchemed.9b00918

Kap O., Kilic V., Hardy J.G. & Horzum N. (2021). Smartphone-based colorimetric detection systems for glucose monitoring in the diagnosis and management of diabetes. Analyst 146: 2784–2806. https://doi.org/10.1039/D0AN02031A

Ko C.H., Liu C.C., Chen K.H., Sheu F., Fu L.M. & Chen S.J. (2021). Microfluidic colorimetric analysis system for sodium benzoate detection in foods. Food Chemistry 345:128773. https://doi.org/10.1016/j.foodchem.2020.128773

Koohkan R., Kaykhaii M., Sasani M. & Paull B. (2020). Fabrication of a smartphone-based spectrophotometer and its application in monitoring concentrations of organic Dyes. ACS Omega 5: 31450-31455. https://doi.org/10.1021/acsomega.0c05123

Lantam A., Limbut W., Thiagchanya A. & Phonchai A. (2020). A portable optical colorimetric sensor for the determination of promethazine in lean cocktail and pharmaceutical doses. Microchemical Journal 159: 105519. https://doi.org/10.1016/j.microc.2020.105519

Li X., Li J., Ling J., Wang C., Ding Y., Chang Y., Li N., Wang Y. & Cai J. (2020). A smartphone-based bacteria sensor for rapid and portable identification of forensic saliva sample. Sensor and Actuator B: Chemical 320: 128303. https://doi.org/10.1016/j.snb.2020.128303

Moonrungsee1 N., Peamaroon N., Boonmee A., Suwancharoen S. & Jakmunee J. (2018). Evaluation of tyrosinase inhibitory activity in Salak (Salacca zalacca) extracts using the digital image-based colorimetric method. Chemical Paper 72: 2729-2736. https://doi.org/10.1007/s11696-018-0528-1

Moonrungsee N., Pencharee S. & Jakmunee J. (2015). Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta 136: 204-209. https://doi.org/10.1016/j.talanta.2015.01.024

Moonrungsee N., Pencharee S., Junsomboon J., Jakmunee J. & Peamaroon N. (2020). A simple colorimetric procedure using a smartphone camera for determination of copper in copper supported silica catalysts. Journal of Analytical Chemistry 75: 200-207. https://doi.org/10.1134/S1061934820020136

Moonrungsee N., Pencharee S. & Peamaroon N. (2016). Determination of iron in zeolite catalysts by a smartphone camera-based colorimetric analyzer. Instrumentation Science & Technology 44: 401-409. https://doi.org/10.1080/10739149.2015.1137587

Moonrungsee2 N., Prachain C., Bumrungkij C., Jakmunee J. & Peamaroon N. (2018). A simple device with a smartphone camera for determination of salicylic acid in foods, drugs and cosmetics (in Thai). The Journal of KMUTNB 28: 639-648. https://doi.org/10.14416/j.kmutnb.2018.03.001

Nixon M., Outlaw F. & Leung T.S. (2020). Accurate device-independent colorimetric measurements using smartphones. PLOS ONE 15: 1-19. https://doi.org/10.1371/journal.pone.0230561

Peamaroon N., Jakmunee J. & Moonrungsee N. (2021). A simple colorimetric procedure for the determination of iodine value of vegetable oils using a smartphone camera. Journal of Analysis and Testing 5: 379-386. https://doi.org/10.1007/s41664-021-00168-x

Phadungcharoen N., Pengwanput N., Nakapan A., Sutitaphan U., Thanomklom P., Jongudomsombut N., Chinsriwongkul A. & Rojanarata T. (2020). Ion pair extraction coupled with digital image colorimetry as a rapid and green platform for pharmaceutical analysis: an example of chlorpromazine hydrochloride tablet assay. Talanta 219: 121271. https://doi.org/10.1016/j.talanta.2020.121271

Qi M., Huo J., Li Z., He C., Li D., Wang Y., Vasylieva N., Zhang J. & Hammock B.D. (2020). On-spot quantitative analysis of dicamba in field waters using a lateral flow immunochromatographic strip with smartphone imaging. Analytical and Bioanalytical Chemistry 412: 6995-7006. https://doi.org/10.1007/s00216-020-02833-z

Rajendraprasad N. & Basavaiah K. (2016). Modified spectrophotometric methods for determination of iron(III) in leaves and pharmaceuticals using salicylic acid. Indian Journal of Advances in Chemical Science 4: 302-307.

Samacoits A., Nimsamer P., Mayuramart O., Chantaravisoot N., Sitthi-amorn P., Nakhakes C., Luangkamchorn L., Tongcham P., Zahm U., Suphanpayak S., Padungwattanachoke N., Leelarthaphin N., Huayhongthong H., Pisitkun T., Payungporn S. & Hannanta-anan P. (2021). Machine learning-driven and smartphone-based fluorescence detection for CRISPR diagnostic of SARS-CoV-2. ACS Omega 6: 2727–2733. https://doi.org/10.1021/acsomega.0c04929

Santos R.C., Cavalcanti J.N.C., Carmo E.C.W., Souza F.C., Soares W.G., Souza C.G., Andrade D.F. & Avila L.A. (2020). Approaching diesel fuel quality in chemistry lab classes: undergraduate student’s achievements on determination of biodiesel content in diesel oil applying solvatochromic effect. Journal of Chemical Education 97: 4462-4468. https://doi.org/10.1021/acs.jchemed.0c00773

Sargazi M. & Kaykhaii M. (2020). Application of a smartphone based spectrophotometer for rapid in-field determination of nitrite and chlorine in environmental water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 227: 117672. https://doi.org/10.1016/j.saa.2019.117672

Shahvar A., Shamsaei D. & Saraji M. (2020). A portable smartphone-based colorimetric sensor for rapid determination of water content in ethanol. Measurement 150: 107068. https://doi.org/10.1016/j.measurement.2019.107068

Souza W.S., De Oliveira M.A.S., De Oliveira G.M.F., De Santana D.P. & De Araujo, R.E. (2018). Self-referencing method for relative color intensity analysis using mobile-phone. Optics and Photonics Journal 8: 264-275. https://doi.org/10.4236/opj.2018.87022